Книга: Математика космоса [Как современная наука расшифровывает Вселенную]

* * *

<<< Назад
Вперед >>>

* * *

На ранних этапах развития новая область науки напоминает коллекционирование бабочек: лови все, что можешь, а затем постарайся расположить свои экспонаты разумным образом. Спектроскописты коллекционировали спектры звезд и классифицировали по ним звезды. В 1866 году Анджело Секки распределил звезды по их спектрам на три различных класса, примерно соответствующие преобладающим в них цветам: бело-голубые, желтые, красно-оранжевые. Позже он добавил еще два класса.

Около 1880 года Пикеринг начал составлять обзор звездных спектров, опубликованный в 1890 году. Большую часть дальнейшей классификации провела Вильямина Флеминг, которая воспользовалась для этого усовершенствованной системой Секки, где классы обозначались буквами латинского алфавита от A до Q. После сложной серии переработок появилась нынешняя система классификации Моргана — Кинана, в которой используются буквы O, B, A, F, G, K и M. Звезды типа O имеют самую высокую температуру на поверхности, звезды типа M — самую низкую. Каждый класс подразделяется на более мелкие подклассы, пронумерованные цифрами 0–9, причем с увеличением индекса температура снижается. Еще один ключевой параметр — светимость звезды — присущая ей «яркость» на всех длинах волн, измеренная как суммарная энергия излучения, испускаемая звездой за секунду[56]. Звездам также присваивается класс светимости, который записывается обычно римскими цифрами, поэтому всего в данной классификации присутствует два параметра, примерно соответствующие температуре и светимости.

Для звезд класса O, к примеру, характерна поверхностная температура выше 30 000 K и голубой оттенок света; по массе они превосходят Солнце по крайней мере в 16 раз, имеют слабые линии водорода и встречаются очень редко. Звезды класса G характеризуются поверхностной температурой от 5200 до 6000 K, светят бледно-желтым светом, имеют массу от 0,8 до 1,04 массы Солнца, показывают слабые линии водорода и составляют около 8 % всех известных звезд. К ним относится и наше Солнце, его тип G2. Звезды класса M характеризуются поверхностной температурой от 2400 до 3700 K и оранжево-красным цветом, имеют массу от 0,08 до 0,45 массы Солнца, показывают очень слабые линии водорода и составляют около 76 % всех известных звезд.


Светимость звезды коррелирует с ее размером, и в названиях различных классов светимости фигурируют гипергиганты, затем сверхгиганты, гиганты, субгиганты, карлики (или звезды главной последовательности) и субкарлики. Так что конкретная звезда может описываться как голубой гигант, красный карлик и т. д.

Если нанести температуру и светимость звезд на график, получится отнюдь не случайная россыпь точек. Точки на этом графике образуют фигуру, напоминающую перевернутую букву Z. Это диаграмма Герцшпрунга — Рассела, которую предложили около 1910 года Эйнар Герцшпрунг и Генри Рассел. Самые заметные ее черты — скопление ярких сравнительно холодных гигантов и сверхгигантов в правой верхней части, изогнутая диагональная «главная последовательность» от горячих и ярких звезд до более холодных и тусклых, и немногочисленное скопление горячих тусклых белых карликов внизу слева.

Изучение спектров звезд перестало быть коллекционированием бабочек, когда ученые начали использовать результаты спектроскопии, пытаясь разобраться, каким образом звезды производят свет и другое излучение. Они быстро поняли, что звезда — это не просто гигантский костер. Если бы источником энергии в ней были обычные химические реакции, то Солнце давно уже сгорело бы до угольков. Диаграмма Герцшпрунга — Рассела также подсказывала, что звезды, возможно, эволюционируют, сдвигаясь по перевернутой букве Z из верхнего правого угла в нижний левый. Такое предположение казалось разумным: тогда получалось бы, что звезды рождаются гигантами, к концу жизни съеживаются до карликов, а в промежутке проходят по главной последовательности и становятся субкарликами. Тогда по мере сжатия они превращали бы гравитационную энергию в излучение — этот процесс известен как механизм Кельвина — Гельмгольца. Исходя из этой теории, астрономы 1920-х годов оценили возраст нашего Солнца примерно в 10 млн лет, чем вызвали на себя жесткую критику со стороны геологов и биологов-эволюционистов, убежденных в том, что наше светило намного старше.

Астрономы сдались только в 1930-х годах, когда стало ясно, что большую часть энергии звезды получают за счет ядерных реакций, а не за счет гравитационного сжатия и что предлагавшаяся ранее эволюционная траектория звезды ошибочна. Родилась новая область науки — астрофизика. При помощи сложных математических моделей она анализирует динамику и эволюцию звезд начиная с момента рождения и до смерти. Главные ингредиенты для своих моделей астрофизика извлекает из ядерной физики и термодинамики.

В главе 1 мы видели, как формируются звезды, когда обширное первичное газовое облако коллапсирует под действием собственной гравитации. Там мы сосредоточились на динамике процесса, но ядерные реакции добавляют к нему новые подробности. Сжатие газового облака высвобождает гравитационную энергию, которая разогревает газ и создает протозвезду — очень горячий вращающийся газовый сфероид, состоящий в основном из водорода. Если температура протозвезды достигает 10 млн K, ядра водорода — протоны — начинают сливаться друг с другом, образуя дейтерий и гелий. Протозвезды с начальной массой менее 0,08 масс Солнца никогда не разогреваются до таких температур, поэтому процесс в них заканчивается пшиком с образованием коричневого карлика. Такие звезды светят тускло, в основном за счет синтеза дейтерия, и быстро гаснут.

Звезды, достаточно горячие, чтобы вспыхнуть, начинают с использования цепной реакции протон — протон. Сначала два протона сливаются, образуя дипротон (легкую форму гелия) и фотон. Затем один из протонов, входящих в состав дипротона, испускает позитрон и нейтрино и становится нейтроном; в результате получается ядро дейтерия. На этом этапе, хотя он и проходит относительно медленно, выделяется небольшое количество энергии. Получившийся позитрон сталкивается с электроном, и они вместе аннигилируют, образуя два фотона и еще немного энергии. Еще примерно через четыре секунды ядро дейтерия сливается еще с одним протоном, образуя гелий-3, один из изотопов гелия; при этом высвобождается гораздо больше энергии.

На этом этапе возможны три варианта. Главный из них предусматривает слияние двух ядер гелия-3 с образованием обычного гелия-4, двух ядер водорода и еще большего количества энергии. На Солнце этот вариант реализуется в 86 % случаев. При втором варианте образуется ядро бериллия, который затем превращается в литий, который, в свою очередь, сливается с водородом и образует гелий. При этом также выделяются различные частицы. Этот вариант Солнце выбирает в 14 % случаев. В третьем варианте задействованы ядра бериллия и бора, и реализуется он на Солнце в 0,11 % случаев. Теоретически возможен и четвертый вариант, при котором гелий-3 сливается с водородом и превращается непосредственно в гелий-4, но он настолько редок, что наблюдать его пока никому не удавалось.

Астрофизики представляют эти реакции в виде примерно таких уравнений:


где D — дейтерий, H — водород, He — гелий, верхний индекс обозначает число нейтронов, нижний — число протонов, ? — это фотон, а МэВ — единица энергии (мегаэлектронвольт). Я упоминаю об этом не потому, что предлагаю вам проследить весь процесс в деталях, а чтобы показать, что его можно проследить в деталях и что он обладает вполне определенной математической структурой.

Ранее я упоминал теорию о том, что звезды эволюционируют и что характеризующая их комбинация температуры и светимости движется по диаграмме Герцшпрунга — Рассела. В этой идее, безусловно, что-то есть, но первоначальные выводы были ошибочны, и разные звезды следуют по разным траекториям — в направлении почти противоположном тому, что предполагалось изначально. При рождении звезда занимает место где-то на главной последовательности диаграммы Герцшпрунга — Рассела. Конкретное положение зависит от массы звезды, которая определяет ее светимость и температуру. Главные силы, влияющие на динамику звезды, — это гравитация, которая заставляет ее сжиматься, и давление излучения, вызванное водородным синтезом, которое заставляет ее расширяться. Стабилизирующая обратная связь противопоставляет эти силы друг другу, так чтобы они уравновешивались. Если гравитация начинает побеждать, звезда сжимается, разогревается и усиливает уровень излучения, восстанавливая баланс. И наоборот, если побеждать начинает излучение, звезда расширяется, немного остывает — и гравитация вновь сжимает ее до состояния равновесия.

Такое балансирование продолжается до тех пор, пока топливо не подходит к концу. Процесс этот должен занимать сотни миллиардов лет для медленно горящих красных карликов, 10 миллиардов лет или около того для таких звезд, как Солнце, и всего несколько миллионов лет для горячих и массивных звезд типа O. После этого гравитация берет верх, и ядро звезды сжимается. При этом либо ядро разогревается достаточно, чтобы запустить гелиевый синтез, либо оно превращается в вырожденное вещество — возникает своего рода атомный тупик, который останавливает гравитационный коллапс. Что конкретно произойдет, определяет масса звезды. Рассмотрим несколько примеров.

Если масса звезды составляет меньше 1/10 массы Солнца, она может пробыть на главной последовательности 6–12 триллионов лет и со временем должна стать белым карликом[57].

Звезда с массой порядка массы Солнца формирует у себя инертное гелиевое ядро, окруженное оболочкой из горящего в термоядерных реакциях водорода. Это заставляет звезду расширяться, и по мере того как ее внешние слои остывают, она становится красным гигантом. Ядро же сжимается до тех пор, пока его вещество не станет вырожденным. Этот коллапс высвобождает энергию, которая разогревает окружающие ядро слои, в результате чего они начинают передавать тепло путем конвекции, а не просто излучением. В газе возникает турбулентность и потоки вещества от ядра к поверхности и обратно. Через миллиард лет или около того ядро из вырожденного гелия становится настолько горячим, что ядра гелия начинают сливаться с образованием углерода с участием бериллия в роли короткоживущего посредника. В зависимости от других факторов звезда может после этого развиться далее в гигантскую звезду асимптотической ветви. Некоторые звезды этого типа пульсируют — попеременно то расширяются, то сжимаются; колеблется и их температура. Со временем такая звезда остывает и становится белым карликом.

У Солнца осталось примерно 5 миллиардов лет до того, как оно станет красным гигантом. При этом Меркурий и Венера будут поглощены расширяющимся Солнцем. На этом этапе орбита Земли, вероятно, будет проходить над самой поверхностью Солнца, но приливные силы и трение о хромосферу будут замедлять ее движение. Со временем Землю тоже ждет поглощение. Это не скажется на отдаленном будущем человеческого рода, поскольку средний срок существования биологического вида составляет лишь несколько миллионов лет[58].

Достаточно массивная звезда, намного крупнее Солнца, начинает гелиевый синтез прежде, чем вырождается ее ядро, и взрывается с образованием сверхновой. Звезда, массой более 40 солнечных, выбрасывает значительную часть своего вещества посредством давления излучения, остается очень горячей и проходит целую серию этапов, на каждом из которых преобладающий элемент ее ядра замещается другим, с более высоким номером в Периодической таблице. Ядро разделяется на концентрические слои: железо, кремний, кислород, неон, углерод, гелий, водород. Ядро такой звезды может в конце концов превратиться в белый карлик или черный карлик — тот же белый карлик, который потерял так много энергии, что совсем перестал светить. Достаточно массивное вырожденное ядро может вместо этого образовать нейтронную звезду или, в более экстремальных случаях, черную дыру: см. главу 14.

Опять же, подробности здесь не имеют значения, и я сильно упростил чрезвычайно запутанное ветвистое дерево возможных вариантов эволюции звезды. В математических моделях, которыми пользуются астрофизики, разбираются все возможные варианты, а также порядок и условия их возникновения. Все богатое разнообразие звезд, различающихся по размеру, температуре и цвету, имеет общее происхождение: ядерный синтез, который начинается с водорода и подвергается воздействию конкурирующих сил давления излучения и гравитации.

Через всю астрофизику красной нитью проходит история о том, как ядерный синтез превращает простые ядра водорода в более сложные ядра: гелия, бериллия, лития, бора и т. д.

И это еще одна причина, по которой звезды важны для нас.

<<< Назад
Вперед >>>

Генерация: 0.566. Запросов К БД/Cache: 0 / 0
Вверх Вниз