Книга: Происхождение жизни. От туманности до клетки

Дальнейшая эволюция эукариот

<<< Назад
Вперед >>>

Дальнейшая эволюция эукариот

После установления симбиоза с митохондриями первые эукариоты стали высокоэффективными хищниками: аэробное дыхание повышает эффективность использования пищи почти в 20 раз по сравнению с гликолизом. Они вышли на поверхность мата и стали поедать цианобактерии. Иногда эукариоты не переваривали съеденные клетки цианобактерий, а оставляли их жить внутри пищеварительной вакуоли и потребляли только выделяемые ими сахара. Такие цианобактерии дали начало второму типу симбиотических органелл – хлоропластам. Эукариоты, приручившие цианобактерий, дали начало трем современным группам водорослей: зеленым, красным и глаукофитовым. Хлоропласты всех этих водорослей покрыты двумя мембранами: внешней – из пищеварительной вакуоли хозяина и внутренней – из клеточной мембраны симбионта. Этот симбиоз называется первичным.

Водоросли больше не нуждались в питании фагоцитозом и ушли из бактериального мата в толщу океана, другие же продолжили питаться бактериями. В дальнейшем среди эукариот появились крупные хищные формы, такие как инфузории, приспособившиеся к питанию другими эукариотами, в первую очередь водорослями. Они вместе со своей добычей составили новую экосистему открытого моря, независимую от занявших мелководья бактериальных матов.

Эукариоты легко заводят внутриклеточные симбиотические бактерии и подчиняют их себе. Так альфа-протеобактерии стали митохондриями, затем цианобактерии – хлоропластами. И в дальнейшем всякий раз, когда эукариотам требовался какой-нибудь новый биохимический путь, они брали на работу бактерий, уже владеющих им. Так, десятки групп глубоководных животных независимо приручили хемосинтетические бактерии, окисляющие сероводород или метан. Фиксация азота, разложение целлюлозы, синтез витаминов и многое другое эукариоты получают благодаря симбиотическим бактериям. Более того, эукариоты способны вступать в эндосимбиоз с другими эукариотами. Многие группы водорослей возникли в результате вторичного симбиоза, когда в роли хозяев выступали хищные амебы и жгутиконосцы, а симбионтами становились зеленые и красные водоросли (рис. 18.15). При таком симбиозе клетки водорослей дегенерируют, и от них могут остаться только хлоропласт и одна-две дополнительные мембраны. Например, хлоропласты амебы Chlorarachnion происходят от зеленых водорослей. Эти хлоропласты покрыты четырьмя мембранами (две мембраны хлоропласта зеленой водоросли, клеточная мембрана зеленой водоросли и пищеварительная вакуоль амебы). Между второй и третьей мембранами находится нуклеоморф – маленький остаток ядра зеленой водоросли с тремя хромосомами, несущими около 280 генов. Эвгленовые хлоропласты тоже происходят от зеленых водорослей, но дегенерация зашла дальше: нуклеоморфа нет, а из четырех мембран осталось три.


Другой хищный жгутиконосец приручил красную водоросль. Его потомки дали начало бурым, золотистым, диатомовым, криптофитовым, гаптофитовым водорослям и динофлагеллятам. Хлоропласты всех этих водорослей имеют три или четыре мембраны. У криптофитовых хлоропласты содержат нуклеоморф, как у Chlorarachnion. Многие группы динофлагеллятов, даже получив фотосинтезирующих симбионтов, возвращались к хищничеству или переходили к паразитизму.

От последних произошли споровики – группа одноклеточных, к которым относится возбудитель малярии. Предки споровиков, как и ряд других водорослей, перенесли в хлоропласт синтез липидов. Поэтому, отказавшись от фотосинтеза, потерять хлоропласт полностью они не смогли. Даже у малярийного плазмодия, предки которого сотни миллионов лет были паразитами, сохраняется апикопласт – маленький, покрытый четырьмя мембранами бесцветный остаток хлоропласта со своей кольцевой ДНК.

Среди вернувшихся к хищному образу жизни динофлагеллят есть множество примеров повторного приобретения водорослей-симбионтов. Так, Lepidodinium завел себе зеленую водоросль, Karenia – гаптофитовую, а Dinophysis – криптофитовую (Keeling, 2004).

Вершиной же симбиотического таланта эукариот можно считать клетку динофлагелляты Kryptoperidinium. Эта одноклеточная водоросль происходит от динофлагеллят, которые имели хлоропласт – потомок красной водоросли. Затем эти динофлагелляты вернулись к хищному образу жизни. Старый хлоропласт остался у них в качестве маленького фоторецептора (глазка). Потом эти хищные жгутиконосцы вступили в симбиоз с диатомовой водорослью, которая сохранила ядро и значительную часть генома. В клетке Kryptoperidinium под управлением ядра находятся в общей сложности пять «чужих» геномов: свой митохондриальный, старого хлоропласта (фоторецептор), ядерный симбионта-диатомеи, митохондриальный геном симбионта-диатомеи и хлоропластный геном симбионта-диатомеи (рис. 18.16, Figueroa et al., 2009). Деление ядер хозяина и симбионта строго синхронизировано. Более того, при половом размножении происходят мейоз и слияние как главных ядер половых клеток, так и ядер симбионтов.


Наличие цитоскелета и сложной системы регуляции генов позволило эукариотным клеткам объединиться в крупные многоклеточные организмы. Сначала это были нитчатые и лентовидные водоросли, которые ускорили накопление кислорода в атмосфере. Новый уровень кислородного насыщения среды открыл возможность появления многоклеточных животных. За этим последовало радикальное усложнение биосферы («Кембрийский взрыв»), когда за короткое время появились десятки типов животных, и некоторые из ранних представителей быстро достигли метровых размеров. После «Кембрийского взрыва» эволюция шла с ускорением, и с тех пор облик Земли определяют многоклеточные растения и животные.

<<< Назад
Вперед >>>

Генерация: 0.287. Запросов К БД/Cache: 0 / 0
Вверх Вниз