Книга: Происхождение жизни. От туманности до клетки
Клетки с ядром – новый уровень сложности жизни
<<< Назад Глава 18 Происхождение эукариот |
Вперед >>> Химерное происхождение эукариот |
Клетки с ядром – новый уровень сложности жизни
Бактерии и археи населяют всю поверхность планеты, толщу и дно океанов и несколько километров земной коры. Однако рекорды размеров и сложности принадлежат другому домену живых организмов – эукариотам. К ним относятся животные и растения, водоросли, грибы и разнообразные одноклеточные организмы – инфузории, амебы, жгутиконосцы и другие. Клетки эукариот отличаются от клеток бактерий и архей во многих отношениях. Если разнообразие бактерий и архей – это прежде всего разнообразие биохимии, то разнообразие эукариот – это во многом разнообразие форм клеток. Все эукариоты имеют практически одинаковый базовый обмен веществ, а если им надо выйти за его пределы, то они обычно «берут на работу» симбионтов-бактерий, вместо того чтобы самим осваивать новые биохимические реакции. Если клетки бактерий и архей, как правило, простые шарики, палочки, нити или спиральки, то многие эукариоты имеют клетки очень сложной формы (рис. 18.1).
Клетки эукариот крупнее примерно в десять раз и содержат ядро, отделяющее геном от остальной клетки. В клетках эукариот находятся сложные системы мембранных цистерн и пузырьков – эндоплазматический ретикулум, аппарат Гольджи, лизосомы и другие пузырьки (они называются вакуоли) (рис. 18.2). Пузырьки управляемо отшнуровываются от мембран в одних местах и сливаются с ними в других.
Форму эукариотической клетки поддерживает клеточный скелет (цитоскелет). Он состоит из тонких нитей белка актина (микрофиламенты) и более толстых трубочек из белка тубулина (микротрубочки). Микротрубочки в основном расходятся из центра клетки ко всей периферии. Микрофиламенты проходят параллельно клеточной мембране, образуя под ней трехмерную сеть. С цитоскелетом связаны моторные белки – миозин, динеин и кинезин. Они перемещают органеллы внутри клетки и обеспечивают движение и изменения формы всей клетки. Если повредить мембрану бактериальной клетки, то все ее содержимое начнет вытекать наружу. В случае повреждения эукариотической клетки вытекают только вода и малые молекулы, а крупные белки и РНК остаются внутри, потому что они прикреплены к цитоскелету. Благодаря ему клетки эукариот могут принимать разнообразные сложные формы.
Отшнуровка и слияние мембран регулируется множеством специальных белков. Благодаря такому управлению мембранами клетки большинства эукариот способны к фагоцитозу – поглощению твердых частиц из внешней среды внутрь клетки. При этом поглощенная частица оказывается окружена мембраной, и с ней можно дальше что-нибудь сделать, например, добавить пищеварительные ферменты и съесть. Многие одноклеточные эукариоты используют фагоцитоз для питания бактериями и друг другом. В организме животных и человека тот же механизм применяется клетками иммунной системы для уничтожения бактерий. Фагоцитоз – отличительная черта эукариот. Бактерии и археи к нему не способны и поглощают из внешней среды только растворенные вещества.
Рибосомы эукариотической клетки крупнее, чем бактериальные, содержат больше белков и используют другой механизм для узнавания матричных РНК. Рибосомы бактерий и архей могут присоединиться к мРНК в любом месте, продвинуться по ней в сторону 3' конца до ближайшего старт-кодона AUG и начать с него синтез белка. Рибосомы эукариот узнают специальную метку на 5' конце мРНК, она называется «кэп», т. е. шапочка, и представляет собой гуаниновый нуклеотид, пришитый особым образом – через 5' – 5' трифосфатный мостик. Матричная РНК без кэпа, как правило, не узнается эукариотическими рибосомами.
На 3' конце матричные РНК эукариот имеют другую модификацию – хвост из 200–500 адениновых нуклеотидов. Каждая мРНК эукариот кодирует только один белок, тогда как у бактерий обычно несколько белков, гены которых составляют один оперон.
Дыхательные цепи и мембранные АТФазы бактерий и архей находятся на внешней мембране клетки, а у эукариот убраны в специальные органеллы – митохондрии и пластиды. Геном бактерий и архей, как правило, имеет вид одной кольцевой молекулы ДНК, а геном эукариот состоит из нескольких линейных молекул ДНК – хромосом. Геномные молекулы ДНК эукариот намотаны для компактности на специальные белковые «катушки» – гистоны. Размер генома может достигать десятков миллиардов пар нуклеотидов, что на четыре порядка больше, чем у бактерий. Геном эукариот часто переполнен некодирующими последовательностями разных типов. При делении эукариотической клетки цитоскелет разделяет скопированные хромосомы по дочерним клеткам в сложном движении, напоминающем эпизод классического балета. Наконец, в жизненном цикле многих эукариот есть половой процесс, при котором в одной клетке собираются гены двух родителей, и мейоз – специальное деление, в котором хромосомы, происходящие от разных родителей, обмениваются отдельными участками, после чего диплоидная клетка делится на четыре гаплоидных (с одиночным хромосомным набором). Таким образом, эукариотическая клетка гораздо сложнее организована, чем бактериальная, и ее появление было таким же крупным эволюционным событием, как переход от РНК-мира к первым клеткам.
Деление клеток эукариот: митоз и мейоз
Геном эукариотической клетки разделен на несколько физических «томов» – хромосом. Когда клетка делится, каждой из двух дочерних клеток должно достаться по своей копии каждой хромосомы. Механизм, который это обеспечивает, называется «митоз».
В процессе подготовки к делению клетка должна вырасти до достаточного размера и скопировать все хромосомы. Когда это выполнено, начинается деление. На первой стадии митоза (профаза) в ядре прекращается синтез мРНК. Хромосомы, которые до этого находились в относительно рыхлом состоянии, становятся компактными и плотно упакованными. Только в таком состоянии их видно в световой микроскоп. Ядерная оболочка разрушается, и хромосомы оказываются в цитоплазме клетки. Микротрубочки цитоскелета клетки перестраиваются. Если между делениями они расходились звездой от центриоли – специальной структуры, организующей систему микротрубочек по всей клетке, то в профазе центриоль удваивается, две дочерние центриоли расходятся по разным сторонам клетки, и микротрубочки образуют вокруг них две звезды.
На следующей стадии, метафазе, микротрубочки двух звезд встречаются посередине. Свежескопированные хромосомы парами прикрепляются к микротрубочкам: одна хромосома каждой пары к микротрубочкам одной звезды, вторая – к другой. Эта структура из миктротрубочек и хромосом называется «митотическое веретено». В его полюсах находятся центриоли, а по экватору расположены пары хромосом.
Когда все пары хромосом правильно прикрепились к веретену, митоз переходит в следующую стадию, анафазу. До этого во время метафазы микротрубочки при помощи моторных белков тянули хромосомы к противоположным полюсам, но попарное соединение копий хромосом не позволяло им разойтись. В анафазе белки, образующие попарное соединение хромосом, разрезаются специальным ферментом. Натяжение микротрубочек растаскивает хромосомы к двум полюсам веретена.
После анафазы наступает телофаза. Веретено становится больше не нужно и разбирается, а вокруг каждой из двух групп хромосом появляется новая ядерная оболочка – образуется два ядра, пока еще в одной клетке. Наконец, после деления ядер наступает время деления всей клетки – цитокинез. В нем главную роль играет вторая половина цитоскелета – микрофиламенты. Они формируют кольцо под наружной мембраной по экватору клетки. Микрофиламенты кольца образуют много связей с мембраной, поэтому, когда кольцо сокращается, оно перетягивает всю клетку пополам и в конечном итоге разделяет ее на две.
Митоз – это самое обычное стандартное клеточное деление эукариот. В ходе митоза хромосомный набор сначала удваивается, а потом делится ровно пополам. Кроме него бывает еще специальное деление – мейоз. В мейозе происходит одно удвоение хромосом и два деления хромосомного набора и клетки. Поэтому в итоге мейоза получаются клетки с уменьшенным вдвое количеством хромосом. Мейоз есть у организмов с половым размножением. При половом размножении происходит слияние половых клеток, и образуется клетка с двойным набором хромосом – зигота. Чтобы число хромосом не удваивалось в каждом поколении, нужен мейоз, который будет уменьшать число хромосом. У животных и человека мейоз происходит при созревании половых клеток. Все клетки человека, кроме сперматозоидов и яйцеклеток, имеют двойной (2n) набор хромосом (иногда больше), только половые клетки (сперматозоиды и яйцеклетки) – одинарный (n). Другое отличие мейоза от митоза состоит в том, что первая профаза мейоза протекает очень долго. В первой профазе родственные хромосомы, унаследованные от разных родителей, обмениваются участками друг с другом. Этот процесс называется «кроссинговер» и служит для повышения генетического разнообразия потомства.
<<< Назад Глава 18 Происхождение эукариот |
Вперед >>> Химерное происхождение эукариот |
- Клетки с ядром – новый уровень сложности жизни
- Химерное происхождение эукариот
- Другие возможные источники генов эукариот
- Архейный предок эукариот
- Причины и механизмы появления эукариот
- Гипотезы о происхождении ядра
- Роль вирусов в происхождении эукариот
- Вирусная теория происхождения ядра и полового размножения
- Дальнейшая эволюция эукариот
- 26. Новый способ лечения психических заболеваний
- Новый человек
- Вариации в сложности
- Откуда взялся новый фермент?
- Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы
- Глава 4. Рождение сложности
- Н. Д. Оводов Плейстоценовый снежный баран Сибири
- Глава 8. Неадаптивная нулевая гипотеза эволюции генома и истоки биологической сложности
- От мусора к функциональности: важность ослабленного очищающего отбора для эволюции сложности
- Парадокс биологической сложности, обманчивость прогресса и значение неадаптивных храповиков
- Диапазон сложности геномов, их функционального содержания и разнообразие геномной архитектуры вирусов
- Дивный новый мир вирусов и прокариот