Книга: Таинственный геном человека

3. История на картинке

<<< Назад
Вперед >>>

3. История на картинке

Вы рассматриваете науку (или, по крайней мере, говорите о науке) как какое-то аморальное изобретение человечества, как что-то далекое от реальности, что-то, что следует охранять и не впускать в повседневную жизнь. Но науку и повседневность не нужно и невозможно разделить.

Розалинд Франклин

Открытие Эвери, Маклеодом и Маккарти «трансформирующего вещества», подтвержденное элегантным экспериментом Херши и Чейз с бактериофагами, доказало, что именно ДНК является молекулой наследования. Но обе группы работали с микробами, бактериями и вирусами, природа наследования у которых гораздо проще, чем, например, у растений и животных. Перед учеными оставалось еще множество вопросов, требующих ответа. Действительно ли ДНК является ключом к наследственности всего живого или это утверждение верно лишь для бактерий и вирусов? К началу 1950-х годов множество различных лабораторий подтвердили, что ДНК представляет собой важный компонент ядер растительных и животных клеток. Это подкрепило теорию о том, что именно она является молекулой, кодирующей саму жизнь. Но как это работает? Каким образом единственная молекула может определять сложную наследственность целого организма?

Эти же вопросы начали задавать себе биологи, врачи, молекулярные биохимики и генетики. Для ответа на них было важно понять точную молекулярную структуру ДНК. Если признать, что именно в ДНК хранится генетическая память, то как именно это невероятно сложное качество обеспечивается структурой молекулы? Как генетическая память передается от родителей к потомкам? Как она объясняет эмбриональное развитие — появление из одной-единственной клетки, возникшей в результате слияния отцовского сперматозоида и материнской яйцеклетки, человеческого эмбриона, который затем превращается во взрослого человека?

Но был и еще один вопрос огромной важности.

Сердце биологии — дарвиновская теория эволюции. В общих чертах она заключается в том, что природа осуществляет отбор из ряда вариаций наследственности различных особей в рамках популяции. Естественный отбор действует очень просто, если не сказать жестко. Особи (и варианты наследования), которые имеют небольшие преимущества для выживания и соответственно более высокие шансы оставить потомство, вносят больший вклад в генетический фонд своего вида. Естественный отбор работает скорее как выборка более сильных. Особи, не имеющие необходимых для выживания преимуществ, с гораздо большей вероятностью погибнут, и их гены вряд ли попадут в общий генетический фонд популяции.

Эволюционные биологи-дарвинисты называют этот показатель вклада каждой отдельной особи в генофонд популяции относительной приспособляемостью. Разумеется, это понятие не имеет ничего общего с расистскими теориями превосходства, неполноценности и выживания сильнейших (это словосочетание в обиход ввел не Дарвин, а философ и социолог Герберт Спенсер). Но, если задуматься, вариативная наследственность, необходимая для работы естественного отбора, также должна реализовываться с помощью механизмов, включающих в себя удивительную молекулу ДНК. Таким образом, ДНК становится не только основой наследственности, но и сердцем самой эволюции. На все эти вопросы требовалось найти ответы, поэтому ученые занялись исследованием структуры (предположив, что она обусловливает функциональность) и свойств ДНК.

Первый шаг к ответам на все эти вопросы был сделан еще в 1943 году при необычных обстоятельствах. Его совершил не биохимик, не биолог и не генетик, а физик из Австрии. В 16:30 в пятницу, 5 февраля Эрвин Шрёдингер поднялся на трибуну в Дублине и прочитал лекцию, которую сегодня считают поворотным моментом в биологии. В 1933 году Шрёдингер был удостоен Нобелевской премии за работу в области квантовой физики, которая расширила наше понимание волновой механики. Но я, пожалуй, не стану запутывать себя и вводить в заблуждение читателей попытками углубиться в эту сферу. Позже Шрёдингер уехал из Австрии в знак протеста против нарушения прав человека и поселился в нейтральной Ирландии по приглашению ее президента Имона де Валера. В Дублине ученый содействовал основанию Института перспективных исследований и в рамках его поддержки согласился прочитать три лекции, объединенные общей темой «Что такое жизнь?».

Шрёдингер был так знаменит, что в аудиторию, рассчитанную на 400 человек, все желающие не поместились. При этом слушателей предупредили заранее, что выступление будет посвящено довольно сложной теме и автор не станет объяснять ее на популярном уровне (хотя Шрёдингер и обещал не упоминать математику). В аудитории присутствовали де Валера, министры его кабинета и репортер Times. Остается лишь догадываться, какие выводы политики и журналисты могли сделать из рассказов ученого о том, «как физика и химия описывают пространственно-временные события, происходящие в пределах живого организма».

Впоследствии Шрёдингер на основе трех дублинских лекций составил небольшую (менее 100 страниц) книгу «Что такое жизнь?». Она была издана на следующий год. В книге ученый популяризовал квантовую интерпретацию генов, которая была предложена ранее выдающимся физиком Максом Дельбрюком.

В начале первой главы Шрёдингер задает вопрос: «Как процессы, происходящие внутри живого организма, могут толковаться с точки зрения физики и химии?» Признавая, что знаний, которыми располагали эти науки на момент написания книги, недостаточно для ответа, он тем не менее высказывает мнение, что «важнейшую часть живой клетки — хромосомное волокно — можно назвать апериодическим кристаллом». Автор сам выделил эти слова, чтобы подчеркнуть, что физика его времени имела дело лишь с периодическими кристаллами, то есть повторяющимися атомными структурами, которые можно наблюдать в самых очевидных кристальных формах (например, в драгоценных камнях).

Что же Шрёдингер имел в виду под апериодическим кристаллом?

Он объяснял этот термин с помощью метафоры. Приглядевшись к обоям на стене, мы можем заметить рисунок, который постоянно повторяется. Это периодический кристалл. Рассматривая гобелены, сотканные по эскизам Рафаэля, мы также заметим осмысленный и последовательный паттерн, однако рисунок повторяться не будет.

Далее Шрёдингер продолжил рассуждения. По его словам, хромосомы или, скорее всего, какие-то другие продольные волокна, слишком тонкие, чтобы их можно было рассмотреть под микроскопом, должны содержать некую «кодовую запись», шаблон, задающий параметры развития человека от оплодотворения яйцеклетки до рождения, а затем определяющий функционирование того, что мы называем геномом, в течение его жизни.

Эти рассуждения подвигли юного, наивного, но крайне любопытного американца Джеймса Дьюи Уотсона, объединить усилия с чуть более опытным и таким же пытливым англичанином Фрэнсисом Криком и создать, пожалуй, наиболее известный на сегодня научный союз. Оба ученых, вдохновившись работой Шрёдингера, начали поиски апериодического кристалла.

* * *

Уотсон был невероятно умным ребенком. Он жил в Чикаго и учился в местном университете, куда поступил в 15 лет, получив в 19 степень бакалавра (в 1947 году). При этом целый год его учебного курса был посвящен зоологии. Его учитель эмбриологии вспоминал, что Уотсон не интересовался лекциями и никогда ничего не записывал, но, несмотря на это, стал лучшим выпускником в своем классе. Впоследствии Уотсон признавался, что ему было попросту лень. Он немного интересовался птицами, но при этом сознательно избегал любых курсов химии или биологии, имевших хотя бы средний уровень сложности. Знания ленивого выпускника о генетике и биохимии тоже были весьма поверхностными. В рамках образовательного курса он посещал лекции Сьюэла Райта, создателя математической системы изучения популяционной генетики. В лекциях обсуждались и работы Эвери, но Уотсон признавался, но пропустил этот материал. Он также заявлял, что его интерес к «тайнам гена» возник после прочтения книги Шрёдингера «Что такое жизнь?».

Вдохновленный книгой, Уотсон получил исследовательскую стипендию в Университете Индианы в Блумингтоне. Он был очень рад этому, так как местным профессором зоологии был нобелевский лауреат Герман Джозеф Мёллер, который еще в 1921 году наблюдал в генах плодовых мушек мутации, аналогичные описанным Хершли и Чейс в генах бактериофагов. Уотсон заинтересовался, как можно манипулировать фагами в пробирках. Репродуктивные циклы этих вирусов крайне коротки, что отлично подходило нетерпеливому ученому. Существовали простые системы, предназначенные для анализа их количества и жизненного цикла, которые могли позволить взглянуть на проблему генов под новым углом. Нужно было всего лишь тщательно разработать эксперимент, направленный на изучение конкретного аспекта этой проблемы, и ответ был готов через пару дней. Близкое и жестокое взаимодействие между фагами и их носителями-бактериями помогло ученым разобраться в сложной химии генов, наследственности и хромосом.

Удивительно, но направление растущему интересу юного Уотсона задал не Мёллер, а другой исследователь фагов — Сальвадор Лурия.

Итальянец по происхождению, Лурия был микробиологом. Как и Эвери, он бежал в Америку от ужасов войны. К тому моменту он работал совместно с Максом Дельбрюком, занимавшим пост профессора биологии в Калифорнийском технологическом университете. В 1943 году Лурия и Дельбрюк разработали и провели эксперимент, продемонстрировавший, что генетическое наследование у бактерий осуществляется в соответствии со строгими эволюционными принципами. Это опыт стал краеугольным камнем современного дарвинизма. В тот же год Дельбрюк подружился с другим микробиологом, Альфредом Херши, который позднее напишет работу о ДНК вместе с Мартой Чейз. В письме Лурии Дельбрюк описывает Херши так: «Пьет виски вместо чая. Живет на лодке… Любит независимость». Трое ученых объединили усилия, сформировав так называемую фаговую группу. Позднее Дельбрюк рассказывал, что участники группы свободно и регулярно общались между собой, но не отчитывались друг перед другом о своих мыслях и действиях. Таким образом, два беженца из Европы смогли положить начало творческому движению, направленному к единой цели — раскрытию тайны генов.

Лурия, Дельбрюк и Херши задались интересными вопросами. Каким образом вирус проникает в бактерию? Как он размножается внутри? Делится ли он, как сама бактерия, отпочковываются ли от него дочерние вирусы? Или он имеет абсолютно иной механизм размножения? Представляет ли он собой сложный физический или химический процесс, который можно объяснить, используя уже известные принципы этих наук? Они надеялись разгадать тайну генов с помощью репродуктивной системы фагов. Сначала эта задача казалась им простой, но шли годы, опыт следовал за опытом, а они так и не приблизились к ответу.

До начала 1940-х годов ученые вроде Дельбрюка и Лурии считали вирусы простыми организмами. У них не было оснований думать иначе, так как большая часть вирусов настолько мала, что их не удавалось детально рассмотреть в обычный оптический микроскоп. Вирусы даже сравнивали с молекулами белка. Лурия, ошибочно упрощая ситуацию, определял вирусы как продолжения бактериального генома. Но после того как немецкая компания Siemens изобрела электронный микроскоп, ученый мир впервые смог увидеть даже мельчайшие вирусы (в том числе бактериофаги). Тут же стало видно, что они гораздо сложнее, чем изначально предполагали Лурия и Дельбрюк.

Многие фаги имеют цилиндрическую головку, под которой расположен узкий хвост такой же длины. Хвост заканчивается базальной пластинкой, к которой прикреплены волокна (фибриллы). Теперь, когда Дельбрюк и Лурия могли визуализировать процесс инфицирования бактерий-носителей, нечто показалось им странным. Вирусы не проходили через клеточную стенку бактерий. Судя по всему, они прикреплялись к ней и впрыскивали внутрь клетки свой генетический материал. В 1951 году исследователь фагов Роджер Хэрриотт писал Херши: «Я представляю себе вирус как небольшой шприц, наполненный трансформирующим агентом». На основании этого описания Херши и Чейз провели собственный эксперимент и подтвердили, что все происходит именно так. Вирус действительно ведет себя как шприц: хвост и длинные фибриллы прикрепляются к стенке бактерии, и фаг вводит через нее свою ДНК, захватывая под контроль генетические механизмы бактерии. Геном вируса заставляет бактериальный геном создавать материал, необходимый для строительства дочерних вирусов. В результате инфицированная клетка становится чем-то вроде фабрики по их производству.

Благодаря этому открытию (а также его распространению на микробиологию и генетику) группа ученых (Дельбрюк, Лурия и Херши) получила в 1969 году Нобелевскую премию.

Но вернемся в 1947 год. Неуемная энергия и харизма Лурии и гений Дельбрюка оказали огромное влияние на юного Уотсона после его прибытия в Университет Индианы. Он все еще был захвачен тайной гена и надеялся, что сможет раскрыть ее, не прибегая к помощи физики или химии.

Из содержания бесед между Лурией и Уотсоном следует, что в Блумингтоне знали об открытии ДНК Эвери. Лурия встречался с ним в 1943 году, еще до публикации главной работы, и имел возможность подробно обсудить ее результаты. Он описывал Уотсону Эвери как очень скромного ученого, точно выражавшего свои мысли и любившего во время разговора закрывать глаза и почесывать лысую голову. «Он выглядел как химик, хотя на самом деле был доктором медицины», — добавлял Лурия. Позднее в «Двойной спирали» Уотсон писал, что Эвери выделил чистую молекулу ДНК и продемонстрировал, как наследственные признаки могут передаваться от одной бактериальной клетки к другой. Учитывая, что ученым было известно о присутствии ДНК в хромосомах всех типов живых клеток, «эксперименты Эвери показывали, что… все гены должны состоять из ДНК».

Осенью 1947 года Уотсон, которому на тот момент было всего 19 лет, записался на курсы Лурии по бактериологии и Мёллера — по генным мутациям, вызванным воздействием рентгеновских лучей. Ему пришлось выбирать — работать с дрозофилами вместе с Мёллером или с микробами под руководством Лурии. Уотсон предпочел второй вариант, хотя среди студентов ходили слухи о вспыльчивости итальянца. Через некоторое время Уотсон сам перенял манеру общения учителя. Дельбрюк оставался для него героической фигурой, так как именно он подсказал Шрёдингеру идеи, которые затем легли в основу книги, вдохновившей юного ученого. Уотсон был счастлив, когда во время визита Дельбрюка в Блумингтон Лурия представил тому своего ученика.

Под руководством Лурии Уотсон писал докторскую работу о патологическом влиянии рентгеновских лучей на фаги, она была настолько скучной, что впоследствии он даже не упоминал ее в своей биографии. Однако даже это не поколебало интереса Уотсона к генам. Летом 1949 года, когда докторская работа уже близилась к завершению, он решил съездить в Европу. Лурия выбил для него у Национального научно-исследовательского совета стипендию Мерка — три тысячи долларов на первый год с возможностью возобновления. В мае следующего года, получив докторскую степень, Уотсон отплыл в Данию, где должен был изучать нуклеотиды под руководством биохимика Германа Калькара. Калькар был талантливым ученым, но ни гены, ни бактериофаги его не интересовали. Разочарованный Уотсон переключился на сотрудничество с другим датчанином, Оле Маалё, который работал над переносом ДНК, помеченной радиоактивными изотопами, от фагов к их потомкам.

Совершенно внезапно Калькар согласился принять участие в краткосрочном проекте исследовательского института зоологии в Неаполе и предложил Уотсону присоединиться. Несмотря на то что морская биология его интересовала мало, Уотсон с удовольствием согласился на путешествие, надеясь погреться на итальянском солнышке. К его разочарованию, Неаполь оказался сырым и промозглым, а в его комнате на шестом этаже дома, построенного в XIX веке, не было даже обогревателя. «Большую часть времени я проводил в прогулках по улицам и чтении журнальных статей, — рассказывал он. — Я мечтал раскрыть секрет гена, но ни одна более или менее приличная идея не приходила мне в голову».

В зоологическом институте он совершенно случайно попал на лекцию английского ученого Мориса Уилкинса. В обычных обстоятельствах подобная лекция вряд ли его заинтересовала бы, ведь анонсировалось, что большая ее часть будет посвящена биохимии белков. «Зачем мне слушать о скучных химических фактах, если химики еще ни разу не сказали ничего полезного о нуклеиновых кислотах?» Тем не менее Уотсон решился посетить мероприятие.

Уилкинс оказался высоким, неуверенным в себе и несколько вялым ученым в очках, и, казалось бы, его выступление должно было нагнать на Уотсона скуку. Однако этого не случилось. Во-первых, лекция была прочитана понятным языком, а во-вторых, даже несмотря на застенчивую манеру разговора, Уилкинс знал свое дело. Внезапно ближе к концу лекции вниманием Уотсона завладел один из слайдов. На экране он увидел фотографию того, что Уилкинс назвал дифракционной картиной ДНК, полученной с помощью рентгеновского аппарата в лондонском Кингс-колледже. Позже Уотсон признавался, что понятия не имел о рентгеновской кристаллографии. Он ничего не понимал из того, что читал о ней в научных журналах, и считал большую часть заявлений «этих безумных кристаллографов» полной чушью.

И вот теперь Уилкинс походя сообщил ему, что перед ним — самое точное изображение ДНК, которое ему и его коллегам удалось получить путем рентгеновских исследований. В аудитории также присутствовал физик из Лидса Уильям Астбери, пионер дифракционного исследования биологических молекул и создатель первых рентгенограмм ДНК. Позднее Астбери подтвердил, что никому еще не удавалось сделать серию более точных изображений молекулы ДНК, чем те, которые продемонстрировал Уилкинс: «В литературе до этого не встречалось ничего подобного». Комментируя слайд, Уилкинс предположил, что ДНК может иметь кристаллическую структуру.

Уотсон был крайне возбужден: пророчество Шрёдингера сбывалось у него на глазах. Еще большее его восхищение вызвали рассуждения Уилкинса о том, что, поняв структуру ДНК, мы смогли бы объяснить, как работают гены. Уотсон начал задаваться вопросами. Кто этот интересный английский джентльмен и как бы присоединиться к его команде в Кингс-колледже?

* * *

На самом деле Морис Хью Фредерик Уилкинс не был англичанином, как предположил Уотсон. Он родился в Понгароа в Новой Зеландии, где его отец Эдгар Генри работал врачом. Предки Мориса были ирландцами: его дедушка по отцовской линии работал в Дублине директором школы, а по материнской — главой отделения полиции. Покинув Новую Зеландию, его семья сначала вернулась в Ирландию, а затем переехала в Лондон, где позднее доктор Уилкинс начал свою революционную работу в сфере общественного здравоохранения.

Еще в детстве Морис проявлял научное любопытство, которое и привело его в Кембриджский университет. Он получил степень бакалавра физики, а затем написал докторскую работу под руководством Джона Туртона Рэндалла (позднее возведенного в рыцарское достоинство) — физика, который сыграл ключевую роль в создании радара во время Второй мировой войны.

Будучи аспирантом, вместе со своим учителем Уилкинс перешел в Университет Бирмингема, где они продолжили работу над радаром. А затем неожиданно Уилкинса отправили в США для участия в Манхэттенском проекте. Перед ним стояла задача выяснить, как очистить необходимые для реализации проекта изотопы урана, полученные из неочищенных источников, и сделать их пригодными для использования в атомной бомбе. В феврале 1944 года Уилкинс пересек Атлантику на корабле «Королева Елизавета» и оказался в Университете Беркли в Калифорнии, где и внес свой скромный вклад в создание атомной бомбы. Однако разрушение Хиросимы и Нагасаки оружием, которое он помогал создать, заставило Уилкинса мучиться угрызениями совести.

После войны Уилкинс вернулся в Англию и через некоторое время был назначен заместителем руководителя биофизического отделения Кингс-колледжа, основанного Советом медицинских исследований. Его бывший учитель Рэндалл занимал там же пост профессора физики. Задача нового отделения состояла в применении экспериментальных физических методов к важным биологическим задачам. Именно благодаря этому Уилкинс начал сотрудничать с Уотсоном и Криком и присоединился к ним в работе над молекулярным кодом ДНК. Кроме того, работа в Кингс-колледже привела к мучительному служебному роману с кристаллографом Розалинд Франклин.

Учитывая, как развиваются события в нашей истории, я хотел бы сделать паузу и поговорить о личности Уилкинса и ее влиянии на будущее. Судя по его запоздало опубликованной биографии, а также по воспоминаниям знакомых и коллег, Уилкинс был тихим человеком со строгими моральными правилами несколько квакерского толка. В детстве он был эмоционально близок со своей старшей сестрой Эйтни, которая учила его танцевать. Однако их общению пришел конец, когда у Эйтни развилась бактериальная инфекция, перешедшая в септицемию — передаваемое через кровь заболевание, вызывающее септический артрит суставов. Тяжелая болезнь ограничивала девочку в передвижениях и подвергала опасности ее жизнь (дело было до изобретения антибиотиков). Она много месяцев провела в больнице: с руками и ногами, подвешенными на растяжках, и вскрытыми суставами, из которых отсасывали гной. Бедняжка Эйтни выздоровела, но ее дружба с братом на этом закончилась. Этот травматический опыт мог сильно повлиять на его уверенность в себе, в особенности в общении с женским полом.

Еще будучи студентом в Кембридже, он влюбился в Маргарет Рэмзи, но «не сумел должным образом проявить свое внимание». После того как Уилкинс признался ей в своих чувствах, на некоторое время повисло молчание, а затем Рэмзи вышла из комнаты. Во время своего пребывания в Беркли Уилкинс влюбился в художницу по имени Рут. Пара начала жить вместе, Рут забеременела, и через какое-то время они поженились, однако когда после окончания войны Уилкинс сообщил ей о своем желании вернуться в Англию, жена отказалась его сопровождать: «Однажды Рут сказала, что назначила мне встречу с юристом. Я прибыл в его контору и с ужасом узнал, что она хочет расторгнуть наш брак». Вскоре после развода Рут родила сына, и перед отъездом за океан Уилкинс навестил ее и ребенка в больнице.

Уилкинс признавался, что ему нелегко было преодолевать врожденную застенчивость и во время работы в Кингс-колледже он периодически прибегал к помощи психотерапевта. Впоследствии ему удалось встретить женщину по имени Патрисия, которая сумела разглядеть за стеснительностью Уилкинса чуткую душу. Они поженились и были счастливы в семейной жизни вместе со своими четырьмя детьми. Даже у угрызений совести, которыми терзался Уилкинс после Манхэттенского проекта, имелись положительные последствия. Перед его отъездом из Беркли один из коллег пришел ему на помощь. Уилкинс писал: «Он увидел, что я ищу какой-то новый путь, и дал мне почитать недавно вышедшую книгу с амбициозным названием “Что такое жизнь?”».

<<< Назад
Вперед >>>

Генерация: 6.178. Запросов К БД/Cache: 3 / 1
Вверх Вниз