Книга: Онтогенез. От клетки до человека

Глава 3 Как создаются различия

<<< Назад
Вперед >>>

Глава 3

Как создаются различия

Искреннее расхождение во мнениях – хороший признак прогресса.

Мохандас Карамчанд Ганди

Суть раннего дробления можно выразить одной фразой: «умножение без изменения». Количество клеток растет в геометрической прогрессии, но каждая новая клетка идентична всем остальным. Действительно, во время первых нескольких делений клетки даже не пользуются собственными генами, а полагаются на запас молекул, помещенных материнским организмом в яйцеклетку и поровну распределяемых при делении между дочерними клетками.[20] Ранние этапы развития полностью посвящены делению. Это имеет смысл: чем больше клеток, тем легче будет в нужный момент создать с их помощью организм. Однако дробление может продолжаться только до определенного момента, так как образующиеся клетки имеют вдвое меньший объем, чем их предшественники. Через некоторое время размер клеток приблизится к минимальному, и им понадобятся паузы для роста между новыми этапами деления. Для роста же необходимы питательные вещества, а чтобы их получить, нужно приложить дополнительные усилия. Это, в свою очередь, означает, что какие-то из клеток должны специализироваться на доставке пищи другим. В эмбрионах многих птиц и рептилий питание осуществляется за счет запасенного в яйце желтка. В случае млекопитающих питательные вещества поступают непосредственно от матери, но общее правило остается неизменным: рано или поздно дробление прекращается и начинается специализация клеток.

Специализация подразумевает, что клетки теряют идентичность. Теперь у разных типов клеток разные функции. На этом этапе эмбрион сталкивается с очень важной проблемой. Создание различий означает необходимость создания нового порядка и новой информации. Увеличение количества информации хорошо иллюстрируется таким примером: для описания асимметричного объекта нам требуется больше слов или, скажем, математических символов, чем для описания симметричного объекта. Так, описать форму кружки с ручкой сложнее, чем описать форму, скажем, стакана. У многих «низших» существ, например насекомых, необходимую информацию обеспечивает мать. Она закладывает пространственную информацию в яйцеклетку в виде градиентов концентрации определенных молекул. Таким образом, во время дробления разные клетки эмбриона наследуют разное количество этих молекул. Затем клетки используют эти различия для выбора пути развития. Этот негенетический метод передачи чрезвычайно важной информации из поколения в поколение очень эффективен, но, насколько мы знаем, у человеческих эмбрионов он не работает, и одна часть яйцеклетки идентична другой.[21] Создание отличительных особенностей – то есть новой информации – представляет собой серьезную логическую задачу для человеческого эмбриона. Как создать закономерность, которой раньше не было? У этой проблемы очень изящное решение: эмбрион получает информацию исходя из законов геометрии.

Пока эмбрион состоял из нескольких клеток, каждая из них занимала достаточно большую долю в общем объеме. Часть поверхности каждой клетки была обращена в окружающую среду. Когда в ходе дробления получается тридцать две или шестьдесят четыре клетки, уже достаточно мелкие по сравнению с размерами сферического зародыша, некоторые из них оказываются окружены со всех сторон другими клетками. Другие все еще имеют контакт с внешней средой – примерно одна шестая их мембраны обращена наружу. Клетки «чувствуют», окружены ли они другими клетками или какая-то их часть соприкасается только с жидкостью. Эту информацию они используют для того, чтобы определиться с дальнейшими действиями. Клетки, имеющие «свободную поверхность», активируют ряд ранее неактивных генов и образуют первую ткань эмбриона – трофэктодерму. Клетки, окруженные другими клетками, эти гены не активируют. Использование в качестве источника информации простого физического признака – наличия свободной поверхности – избавляет эмбрион от необходимости иметь заранее подготовленный пространственный план. Кроме того, клеткам не нужно «знать» свое точное расположение в эмбрионе. Им нужно только определить, есть у них свободные участки поверхности или нет.

Задача трофоэктодермы заключается только в создании структур для структурной поддержки и питания эмбриона. Частью ребенка она никогда не станет.[22] В первую очередь трофэктодерма перекачивает в эмбрион жидкость. Эта жидкость накапливается, что приводит к образованию обширной полости (рис. 6). Формирование этой полости, в свою очередь, приводит к тому, что внутренние клетки группируются на внутренней поверхности трофэктодермы в виде эксцентрично расположенного комка, который называется «внутренняя клеточная масса». Если судить только по внешнему виду, эти клетки кажутся менее интересными, чем активные клетки трофэктодермы, постоянно занятые питанием, накачкой жидкости, внедрением в материнский организм. Однако именно из внутренней клеточной массы и формируется ребенок. Иногда эта масса делится на два комочка, каждый из которых развивается, формируя в итоге человеческий организм. Такие близнецы, как и те, о которых рассказывалось в главе 2, будут генетически идентичны, но на этот раз они будут расти в одной общей трофэктодерме. В то же время у каждого из близнецов будет свой желточный мешок и амниотическая полость (см. далее). Таким образом, они надежно изолированы друг от друга. Это самый распространенный механизм появления однояйцевых близнецов, на его долю приходится две трети всех случаев. (Третий, крайне редкий вариант появления близнецов будет описан несколько позже.)

К тому времени, когда клетки трофэктодермы закачают внутрь эмбриона объем жидкости, достаточный для создания полости, и создают вздувшуюся структуру, эмбрион должен покинуть фаллопиеву трубу матери, где произошло оплодотворение, и переместиться в матку. Этот орган в норме как бы немного «сдут»: его стенки слипаются, как снятая с руки резиновая перчатка. Особенно «сдувшейся» матка выглядит через неделю после овуляции. Поэтому весьма вероятно, что ранний эмбрион, попав в матку, вскоре столкнется с ее внутренней поверхностью. Когда это произойдет, он закрепляется на ней, используя специальный набор адгезивных молекул. После прикрепления клетки эмбриона образуют новые белки, которые позволяют им внедриться между клетками стенки матки.[23] В течение нескольких часов «пальчики» клеток эмбриона проникнут в ткани матери, и образуется плацента. Многие клетки матки при этом разрушаются, а их остатки становятся пищей для эмбриона. Реакция матери на эту атаку приводит к дальнейшему отмиранию ткани. Таким образом, через десять дней после оплодотворения формируется полость, в которой легко умещается эмбрион. У людей и некоторых животных внутренняя выстилка матки обрастает эмбрион, скрывая место имплантации.


Рис. 6. Схема перехода от стадии двух клеток к стадии образования полости и затем к стадии обособления трофэктодермы и внутренней клеточной массы. Эмбрион заключен в плотную желеобразную «капсулу», прежде служившую оболочкой яйцеклетки; она носит название вителлинового слоя, или zona pellucida

Образ жизни эмбриона человека близок к паразитическому, но не стоит принимать эту метафору слишком близко к сердцу. В любом случае это единственный способ вынашивания потомства, а значит, выживания у нашего вида. Мать не просто терпит паразитизм ребенка, а поощряет его за счет постоянного взаимодействия. Если построенный на сигнальных молекулах «диалог» между маткой и эмбрионом прекращается, эмбрион не может оставаться имплантированным, и беременность прерывается.[24]

Иногда эмбрион движется по женским половым путям от места оплодотворения в маточной (фаллопиевой) трубе чересчур медленно и не достигает матки к тому времени, когда уже готов к имплантации. Одной из распространенных причин этого медленного перемещения является повреждение выстилки маточной трубы бактериями Chlamydia.[25] В наше время это часто встречается у молодых женщин.[26] Эмбрион, достигший определенной стадии развития, пытается имплантироваться там, где он находится в данный момент, даже в яйцеводе. Это ведет к внематочной беременности. Маточная труба не приспособлена для поддержания роста плода ни физически (по размеру и растяжимости), ни физиологически (в плане возможности обеспечить питание и приток крови). Во многих случаях это приводит к выкидышу. Иногда выкидыш приходится вызывать искусственно для спасения жизни матери.

До начала специализации клетки внутренней клеточной массы могут дать начало любой клетке организма. Во всяком случае, так происходит у мышей: на людях подобные эксперименты не могут проводиться по этическим соображениям. Для описания спектра типов клеток, в которые может дифференцироваться та или иная клетка эмбриона, исследователи часто используют специальную древовидную диаграмму, отображающую типы клеток и последовательность дифференцировки. Пример такой диаграммы приведен на рис. 7. Все возможные варианты в конечном счете происходят от одного типа клеток, который на такой диаграмме представляет собой ствол дерева. Поэтому эти клетки называют стволовыми клетками. (Это буквальный перевод немецкого термина «Stammzelle», который предложил в 1909 г. Александр Максимов, изучавший «древо» клеток крови.) В зависимости от конкретной схемы термин «стволовые клетки» может быть применен как к клетке, которая может создать только несколько различных типов клеток организма, так и к клеткам с большими потенциями.


Рис. 7. Типичная древовидная диаграмма, которая обобщает данные о траекториях клеточных дифференцировок – клетки ранних стадий развития дают начало клеткам более поздних стадий (или дифференцируются в них). Эта диаграмма, которую следует читать снизу вверх, отражает события, описанные в этой и последующих главах. Древо всего процесса развития человека было бы огромным и содержало бы сотни ветвей. Нижняя точка таких диаграмм всегда принимается за «стволовую клетку» независимо от того, находится ли эта клетка на самом раннем этапе развития или уже прошла определенное расстояние «вверх» вдоль ствола дерева. Об использовании термина «стволовые клетки» будет рассказано позже

В последнее время понятие «стволовые клетки» несколько сузилось. Многие авторы утверждают, что стволовыми клетками следует называть только клетки, способные поддерживать собственную популяцию, а также давать начало другим типам клеток, расположенным на диаграмме над ними. (Термин, предложенный Максимовым, в явном виде не предполагал подобной трактовки).[27] К счастью, эта терминологическая тонкость не влияет на применимость термина «стволовые клетки» к внутренней клеточной массе, которая показана на рис. 7 в нижнем правом углу, потому что ее клетки могут поддерживать свою популяцию, даже если удалить их из эмбриона и поместить в пробирку. Они дают начало всем тканям организма. Поэтому клетки внутренней клеточной массы иногда называют эмбриональными стволовыми клетками (ЭСК), особенно в тех случаях, когда их извлекают из эмбрионов и выращивают в культуре.[28]

Эмбриональные стволовые клетки сыграли очень важную роль в медико-биологических исследованиях последних десятилетий. В хорошо отработанных рутинных экспериментах ученые направленно «редактируют» гены ЭСК мышей, а затем вводят такие модифицированные клетки в клеточную массу эмбриона обыкновенной мыши. В результате в организме мыши, которой сделали инъекцию, образуется смесь нормальных клеток внутренней клеточной массы и генетически модифицированных ЭСК. Как правило, удается сделать так, чтобы часть сперматозоидов самца мыши развивалась именно из генетически модифицированных клеток. Потомство такого самца, полученное в результате обычного спаривания, будет иметь модифицированные гены во всех клетках тела. Этот метод позволил ученым создать мышиные «копии» генетических заболеваний человека, а эксперименты, проведенные на таких копиях, дают возможность лучше понять болезнь и разработать способы лечения.[29] Всего в лабораториях мира были получены десятки тысяч таких мышей. Многие факты, описанные в этой книге, были открыты в процессе наблюдения за протеканием беременности и эмбриональным развитием генетически модифицированных мышей.

Существуют и человеческие ЭСК.[30] Есть надежда, что, если найти способы управления их развитием и получения нужных типов клеток, их можно будет использовать для «ремонта» поврежденных тканей в организме человека или даже для создания новых тканей для пересадки. Тем не менее эти разработки воспринимаются неоднозначно: ЭСК можно получить, только уничтожив человеческий эмбрион на раннем этапе развития. Для некоторых людей тот факт, что эмбрион впоследствии становится человеком, является достаточным основанием для придания ему статуса человека. В рамках такого подхода уничтожение эмбриона, по сути, является убийством; оно неприемлемо, какую бы пользу ни сулило. Кто-то, напротив, считает, что у раннего эмбриона отсутствуют такие человеческие атрибуты, как мысли или чувства, и он не нуждается в защите. Тем не менее многие придерживаются промежуточной позиции и допускают возможность исследований на человеческих эмбрионах при условии, что это регулируется определенными правилами. Последние разработки могут помочь найти выход из этой этической дилеммы. Исследовательская группа из Японии недавно открыла способ превращать обычные соматические клетки мыши в клетки, подобные ЭСК. Они получили название индуцированных плюрипотентных стволовых клеток, сокращенно ИПСК.[31] Чтобы проверить, насколько они сходны с ЭСК, исследователи заменили на них внутреннюю клеточную массу эмбриона. В результате родились здоровые мышата. Этот метод относительно прост и в настоящее время используется во многих лабораториях по всему миру. Многие ученые применяли его к соматическим клеткам человека, создавая на их основе нечто очень похожее на ИПСК. Я говорю «нечто очень похожее», так как по этическим причинам нельзя экспериментировать с человеком, как с мышью, и точно проверить это нельзя. Если ИПСК действительно идентичны ЭСК человека, их можно будет использовать для того же, для чего сейчас используются ЭСК. Таким образом, отпадет необходимость использовать человеческие эмбрионы в исследованиях подобного рода. Это может воплотиться в жизнь, но вряд ли обрадует тех, кто присваивает эмбриону статус человека на том лишь основании, что эмбрион может им стать. Если все наши клетки могут стать плюрипотентными и дать начало человеческому организму, почему бы не считать людьми и их?

У нормального эмбриона клетки внутренней клеточной массы очень недолго остаются в исходном состоянии: уже через короткий промежуток времени они начинают специализироваться, и каждый из типов клеток приобретает свои отличительные черты. Наличие у эмбриона особой заполненной жидкостью полости означает, что некоторые клетки внутренней клеточной массы, которая лишь незначительно увеличивается в размерах, окружены другими, а некоторые имеют свободную поверхность. Наличие свободной поверхности снова нарушает симметрию межклеточной адгезии, так что клеточный слой, соприкасающийся с жидкостью, стоит особняком от других клеток. Он становится плотным слоем – гипобластом.[32] Раньше считалось, что клетки превращаются в гипобласт в силу того, что просто оказываются в нужное время в нужном месте. Однако недавние эксперименты на мышах показали, что некоторые клетки внутренней клеточной массы могут иметь к этому предрасположенность. Как только где-то возникает свободная поверхность, эти клетки мигрируют туда, а другие переходят внутрь, на их место.[33] В любом случае определяющим фактором пространственной организации служит именно свободная поверхность (рис. 8). Некоторые клетки гипобласта остаются там, где образовались, но большинство распространяются по слою трофэктодермы и формируют полый желточный мешок (это название используется по аналогии с эмбрионами низших позвоночных).

Оставшиеся клетки внутренней клеточной массы делятся на два слоя. Клетки, непосредственно прилегающие к гипобласту, остаются на месте и образуют новый слой – эпибласт. Клетки вышележащего слоя отслаиваются от эпибласта, и в результате формируется еще одна полость. Она называется амниотической полостью (см. рис. 8). Двухслойный диск, состоящий из эпибласта и гипобласта, зажат между полостью желточного мешка и амниотической полостью, как перемычка в греческой букве тета (?). Эпибласт, слой, обращеннный к полости желточного мешка, даст начало всем клеткам будущего ребенка.[34],[35]


Рис. 8. Эмбрион снова проделывает «трюк со свободной поверхностью», чтобы получить из граничащего с жидкостью слоя клеток внутренней клеточной массы новый тип клеток – гипобласт. Слой оставшейся внутренней клеточной массы, соприкасающийся с гипобластом, снова дифференцируется, образуя эпибласт. Благодаря этому слой вышележащих клеток отделяется, образуя новую полость. Эпибласт – невзрачный клеточный диск – даст начало будущему младенцу; все остальное пойдет на образование тканей, необходимых для поддержания жизни плода в матке

События, описанные в этой главе, в основном вели к нарушению единообразия и появлению различий между ранее идентичными клетками. На ранней стадии развития эмбрион несколько раз использует один и тот же трюк – дальнейшая судьба клеток зависит от наличия или отсутствия у них свободной поверхности. Это позволяет использовать чистую геометрию в качестве источника новой информации. В каждом случае сугубо локальные взаимодействия приводят к масштабным изменениям. При этом ни одна клетка не «руководит процессом» и не «видит» его общей картины. С появлением разных типов тканей эмбриону будет значительно легче создавать дальнейшие различия. Например, новый тип клеток – С – может развиваться в местах контакта клеток типов А и B. Таким образом, сформируются две новые зоны контакта (АС и СВ), и каждая из них будет служить основой для спецификации следующих типов клеток. На более поздних стадиях развития «эпоху внешних воздействий» (например, использование свободных поверхностей) сменяют механизмы, основанные на внутренних различиях. Первый из них и, возможно, наиболее примечательный станет следующей темой для обсуждения.

<<< Назад
Вперед >>>

Генерация: 3.979. Запросов К БД/Cache: 3 / 1
Вверх Вниз