Книга: Микробы хорошие и плохие. Наше здоровье и выживание в мире бактерий

Трансгенные пробиотики

<<< Назад
Вперед >>>

Трансгенные пробиотики

Сорокатрехлетний голландский фермер уже собирал вещи, чтобы идти домой, когда его остановили медсестры. “За три дня ему стало настолько лучше, что он был готов уйти из больницы, – вспоминает Майкел Пеппеленбос, специалист по молекулярной биологии из Бельгии, работающий в Университетском медицинском центре Гронингена в Нидерландах. – Нам пришлось объяснять ему, что этого ни в коем случае нельзя делать, как бы замечательно он себя ни чувствовал”. Тремя днями раньше, весенним утром 2003 года, фермер принял первую горсть небольших капсул, которые ему предписали принимать по десять штук дважды в день и в каждой из которых содержалось около 10 миллиардов клеток используемой в сыроделии бактерии лактококка (Lactococcus lactis). Этот скромный поступок вписал голландца в историю как первого человека, преднамеренно заселенного трансгенными бактериями. В живых микробов, которых он проглотил, был внедрен и работал в их клетках человеческий ген успокаивающего иммунную систему цитокина – интерлейкина-1055.

Исследователи давно знали, что у лабораторных животных, не способных производить интерлейкин-10, развиваются тяжелые заболевания кишечника, подобные болезни Крона, от которой этот голландский фермер страдал уже больше двадцати лет. Иммунная система мыши с дефицитом интерлейкина-10, как и человека с болезнью Крона, утрачивает толерантность к нормальной микрофлоре пищеварительного тракта. Это приводит к мучительным и иногда смертельно опасным воспалениям и язвам кишечника. Но попытки использовать интерлейкин-10 в качестве лекарства наталкиваются на огромные проблемы. Сложно доставить достаточное количество этого успокаивающего иммунную систему вещества в кишечник, где оно необходимо, и еще сложнее не пустить его в другие части организма, где его избыток может вызвать опасное подавление работы иммунной системы.

В 1999 году бельгийский специалист по молекулярной биологии Лотар Стейдлер придумал новое решение. Он взял человеческий ген, отвечающий за производство интерлейкина-10, и внедрил его в хромосому L. lactis – бактерии, которую можно разводить в культурах и которая задерживается в пищеварительном тракте от двенадцати до двадцати четырех часов, прежде чем выйти наружу вместе со стулом. Этого времени вполне достаточно, чтобы принимаемая два раза в день пищевая добавка на основе бактерий доставляла успокаивающий цитокин к тканям кишечника, не создавая опасности подавления иммунной системы всего организма.

В тот же год Стейдлер успешно использовал полученный им трансгенный организм для лечения мышиного аналога болезни Крона56. Но в то время он был лишь одним из многих молодых ученых, создававших лабораторные штаммы трансгенных бактерий в надежде на то, что этих микробов можно будет когда-нибудь использовать для доставления лекарств или вакцинирующих антигенов в организм человека. В интересах безопасности от всех этих исследователей требовалось с предельной строгостью держать своих генетически модифицированных “Франкенробов” в биологическом заключении, равно как и всех заселенных ими животных. Европейские органы здравоохранения, как и Управление пищевых продуктов и медикаментов, еще только начинали разбираться с возможными последствиями внедрения генетически модифицированных микроорганизмов людям. Бактерия, вырабатывающая такой мощный иммунодепрессант, как интерлейцин-10, представляла особую угрозу. Даже если сам трансгенный организм и оказался бы безвредным, возможная передача им новоприобретенного гена болезнетворным микробам могла бы привести к катастрофе, давая им возможность подавлять иммунный ответ, направленный на борьбу с инфекцией.

Однако Стейдлер оказался хитрее большинства своих коллег. Наделяя пробиотических L. lactis способностью производить интерлейкин-10, он внедрил человеческий ген в самую середину собственного гена этой бактерии, необходимого ей для синтеза питательного вещества тимидина. В итоге Стейдлер, подобно Хиллману, получил искусственного микроба, не способного долго жить, если его специально не подкармливать. Кроме того, Стейдлеру помогло то, что L. lactis не входит в состав нормальной человеческой микрофлоры. Когда человек поглощает природные разновидности этой бактерии с молочными продуктами, она исчезает из кишечника за сутки или двое. Наконец, использованные Стейдлером методы генной инженерии гарантировали, что даже если трансгенные L. lactis и будут делиться своим геном интерлейцина-10 с другими микробами, единственным местом, куда этот ген сможет встроиться, будет середина их гена, ответственного за синтез тимидина. Так что они тоже будут калеками, не способными нормально питаться.

В числе тех, на кого генетический трюк Стейдлера произвел особенно сильное впечатление, был Майкел Пеппеленбос. Он тоже работал тогда постдоком во Фламандском биотехнологическом институте в Генте и делил там со Стейдлером лабораторный стол, хотя они и занимались разными проектами. Впоследствии Стейдлер переехал в Ирландию, где стал профессором в Университетском колледже Корка. А Пеппеленбос уехал в Нидерланды и возглавил собственную лабораторию в Университетском медицинском центре Гронингена. “Когда я узнал, что у Лотара не получается провести клинические испытания в Ирландии, я предложил ему попытать счастья с голландскими властями”, – говорит Пеппеленбос.

“Нам повезло: Лотар сделал на редкость удачную бактерию, – добавляет он. – На получение одобрения на испытания ушло немало времени, но нам не предъявили ни одной формальной претензии”. Меньше чем через восемь месяцев после обращения в голландские органы здравоохранения Пеппеленбос получил одобрение на проведение испытаний на предмет безопасности на десяти страдающих болезнью Крона пациентах, ни одному из которых не помогали обычные методы лечения, такие как стероиды. “Это были пациенты, для которых единственной возможной альтернативой было удаление кишки”, – говорит Пеппеленбос. Средства на проведение испытаний были выделены в Соединенных Штатах, а также по частному исследовательскому гранту миллиардера Илая Броуда, сын которого давно страдал этой болезнью.

И вот за следующие два с половиной года врачи из амстердамского Академического медицинского центра провели цикл лечения десяти пациентов, которых держали в единственном защищающем от биологической опасности изоляторе медцентра. У большинства из этих пациентов, как и у сорокатрехлетнего фермера, с которого началось испытание, было отмечено резкое улучшение симптомов, говорит Пеппеленбос. “Но испытание проводилось лишь с целью показать безопасность, а не эффективность лечения, – тут же добавляет он. – Мы даже не использовали плацебо в качестве контроля”. Исследователи решили, что будет несправедливо просить тяжелобольных пациентов рисковать, получая плацебо вместо лекарства вдобавок к трудностям, связанным с пребыванием в течение двенадцати дней в изоляторе.

Так или иначе, проверка на безопасность прошла вполне успешно57. Трансгенные бактерии не производили никаких отрицательных побочных эффектов и полностью исчезали из стула испытуемых в течение суток после приема последней капсулы в последний день семидневного курса лечения. Как и ожидалось, симптомы испытуемых возобновились в течение нескольких недель после их возвращения домой, в связи с чем некоторые из них стали просить, чтобы их продолжили лечить данным нетрадиционным способом. “Разумеется, мы не могли этого сделать, – объясняет Пеппеленбос. – Что правильно. Нужно соблюдать предельную осторожность”. И все же он надеется, что тем десяти пациентам, как и пятидесяти другим, разрешат участвовать в следующем испытании, запланированном на лето 2008 года. “Теперь, когда проверка на безопасность показала, что бактерия не задерживается в организме, – говорит он, – мы ожидаем, что государственные инстанции разрешат нам провести следующее испытание на амбулаторных больных”. Сейчас, в середине 2007 года, исследователи по-прежнему ожидают решения по этому вопросу.

Тем временем Стейдлер и Пеппеленбос работают над еще более прицельным применением трансгенных пробиотиков. Их идея состоит в том, чтобы дать бактериям, синтезирующим разные лекарственные вещества, дополнительные гены синтеза антител, которые позволят этим модифицированным микробам прикрепляться к определенным тканям в организме. Например, противораковый пробиотик можно наделить геном синтеза антител, которые позволят ему прикрепляться к поверхности клеток раковой опухоли.

В то же самое время в лабораториях по всему миру ученые тестируют на животных десятки других трансгенных пробиотиков. Среди них есть несколько разновидностей вагинальных бактерий, выделяющих вещества, которые убивают вирус иммунодефицита человека (ВИЧ). Например, Грегор Рид из Канады в сотрудничестве с исследователями из США и Австралии усовершенствовал человеческий пробиотик на основе Lactobacillus reuteri, добавив ему человеческих и модифицированных генов, ответственных за синтез коктейля из трех белков, не позволяющих вирусу СПИДа садиться на те клетки иммунной системы, которые он обычно уничтожает, сливаться с ними и проникать внутрь58. Совсем скоро могут начаться клинические испытания подавляющей ВИЧ лактобактерии, совершенствуемой в настоящее время биотерапевтической компанией Osel в городе Санта-Клара (Калифорния). Идея, положенная в основу этого пробиотика, пришла в голову врачу и ученому Питеру Ли из Стэнфордского университета еще в середине девяностых. Ли вспоминает, как, сидя у себя в лаборатории, он погрузился в раздумья о способах предотвращения попадания вирусов в организм. “Идея, до которой я додумался, – говорит он, – состояла в том, что для этого дела можно приспособить бактерий, живущих на наших слизистых оболочках”59. Именно через эти влажные, пористые оболочки вирусы почти всегда и проникают в наш организм.

Почти год Ли прочесывал научную литературу и расспрашивал коллег, пытаясь найти сведения об исследованиях на эту тему. К своему удивлению, говорит он, ничего найти не удалось. “Но чем больше я думал об этом, тем логичнее мне это казалось. Если населяющие наш организм бактерии и без того образуют защитный барьер, почему бы не усовершенствовать их, чтобы они противостояли вирусам еще эффективнее?”

Кое-что Ли все же обнаружил – публикации Шэрон Хиллиер, проводящей исследования в области гинекологии в Питсбургском университете. В сотрудничестве с коллегами из Африки она занималась разработкой недорогих средств, которые позволили бы женщинам защищать себя от ВИЧ в тех районах, где презервативы стоят слишком дорого или неприемлемы с точки зрения местной культуры. Первым делом она выяснила, что женщины, у которых имеется здоровая вагинальная микрофлора (то есть многочисленные лактобактерии), вдвое реже заражаются ВИЧ, чем женщины, у которых нет этих защитных бактерий60. Затем исследовательница занялась изучением разных штаммов и видов лактобактерий в поисках тех из них, которые отличались бы наибольшим защитным действием. Наилучшими претендентами на эту роль оказались те лактобактерии, которые, во-первых, в большом количестве выделяют перекись водорода, обладающую противовирусным эффектом, а во-вторых, формируют естественную биопленку, как бы приклеивая свои клетки к поверхности стенок влагалища.

Роберт Ли предложил Шэрон Хиллиер усовершенствовать найденных ею вагинальных микробов методами генной инженерии. В 1998 году он основал компанию Osel, чтобы реализовать свой замысел. Научная команда, работающая в этой компании, усовершенствовала вагинальную бактерию Lactobacillus jensenii, добавив ей человеческий ген клеточного белка CD4, служащего молекулярной мишенью для ВИЧ. При смешивании с культурами человеческих клеток этот трансгенный микроб полностью подавлял их заражение лабораторным штаммом ВИЧ, а заразность штамма, выделенного из крови пациента, сокращал вдвое61. В 2006 году исследователи сообщили, что им удалось создать, по-видимому, еще более сильное средство против ВИЧ: трансгенную L. jensenii, выделяющую белок циановирин N, – он разрушает вирусные частицы и, как было показано, позволяет предотвращать заражение ВИЧ у обезьян62. Ген этого белка был выделен из яркоголубой цианобактерии Nostoc ellipsosporum63. В начале 2007 года исследователи из компании Osel уже проверяли способность полученного ими нового противовирусного микроба предотвращать заражение ВИЧ у животных. Тем временем Ли продолжает как свою работу в компании, так и исследования в Стэнфордском университете, где в настоящее время он пытается реализовать новый замысел – создать микробов, которые подавляли бы вирусов, вызывающих развитие лейкемии.

В то время как Хиллман и Ли трудятся на передовой в борьбе за генетическое усовершенствование нашей собственной микрофлоры, другие ученые исследуют возможность создания живых трансгенных вакцин. Эти потенциальные вакцины будущего состоят из безвредных представителей нашей микрофлоры, модифицированных таким образом, чтобы они вырабатывали антигены (молекулярные маркеры) возбудителей опасных болезней. Теоретически, если такой микроб поселится у нас в организме, он будет побуждать нашу иммунную систему к производству антител против того “плохого парня”, чью “черную шляпу” на него надели.

Среди первых исследователей, которым удалось получить работающие образцы таких живых трансгенных вакцин, был Винсент Фискетти из Рокфеллеровского университета. В 1995 году он создал штамм одной из бактерий полости рта (Streptococcus gordonii), поверхность клеток которого усыпана характерными антигенами пиогенного стрептококка64. Биологи из Государственного университета Нью-Йорка, в свою очередь, создали другой трансгенный штамм той же бактерии, клетки которого носят на себе антигены микроба Porphyromonas gingivalis – виновника определенной формы парадонтита, повреждающего костные ткани65. А в Институте Пастера во Франции иммунологи получили целый ряд живых вакцин на основе штаммов бактерии Lactobacillus plantarum, используемой для производства йогурта. Один из этих штаммов синтезирует фрагмент столбнячного токсина, другой – антигены Helicobacter pylori, микроба, способствующего развитию язвы желудка66. Другим ученым удалось создать трансгенных бактерий для живых вакцин против холеры, сальмонеллеза, шигеллеза, листериоза, туберкулеза, чумы, сибирской язвы и даже злокачественных опухолей, причем все они уже показали довольно неплохие результаты в экспериментах на животных67.

Некоторые исследователи работают над созданием трансгенных бактерий, побуждающих иммунную систему производить антитела против вредных веществ, вырабатываемых нашим собственным организмом. Например, швейцарские ученые получили трансгенный штамм еще одной бактерии, используемой для производства йогурта (Lactobacillus johnsonii), на поверхности клеток которого имеется человеческая разновидность антител IgE, способствующих развитию аллергических реакций. Когда этот штамм вводят животным, он стимулирует выработку иммунной системой других антител (IgG), которые ликвидируют вызывающие неприятности антитела IgE68.

“Применение живых бактерий в качестве носителей – мощное орудие, позволяющее эффективно доставлять в организм антигены, используемые для вакцинации, – писала немецкий иммунолог Эва Медина в опубликованном в 2001 году обзоре, посвященном новой и быстро развивающейся области медицинской иммунологии. – Возможности эксплуатации этой системы почти неограниченны”69.

Но ее энтузиазм разделяют не все. “Перспективы улучшения пробиотических микробов с помощью генетических модификаций необходимо строго оценивать в плане возможного превращения безвредных и полезных микробов в возбудителей опасных инфекций”, – утверждает генетик Джо Камминс, бывший сотрудник Университета Западного Онтарио, недавно вышедший на пенсию. Одна из главных опасностей, по словам Камминса, состоит в том, что бактерии, введенные в организм единственного человека, способны легко передаваться другому. Когда речь идет о вакцинации против опасных инфекций, такая независимая передача может приносить огромную пользу. Но не исключено также, что она окажется небезопасной – если живые вакцины будут поселяться в организме не только у здоровых людей, но и у больных с нарушениями иммунитета70.

Камминс обращает внимание еще и на такую опасность: живая вакцина, поселившаяся в ротовой полости, носоглотке или кишечнике, может производить непредвиденный эффект, повышая толерантность иммунной системы, вместо того чтобы способствовать борьбе с инфекциями. “Когда такие бактерии станут постоянным элементом экосистемы организма, иммунная система с большой вероятностью начнет принимать их за своих, – утверждает он, – и тогда они перестанут стимулировать выработку антител против болезнетворных микробов”. Он ссылается на недавние открытия иммунологов, показавших, что многократный контакт едва ли не с любым антигеном приводит к выключению иммунного ответа, по крайней мере в тех случаях, когда он не сопровождается сигналами об опасности, например о повреждениях тканей. Предположительно именно так наш организм и вырабатывает толерантность к антигенам, содержащимся в нашей пище, а также к микрофлоре нашего пищеварительного тракта и верхних дыхательных путей.

Особенно резко Камминс выступает против живых вакцин, в которых используются сигнальные вещества и антитела собственной иммунной системы организма. “Мы знаем по опыту, что вмешательства в работу иммунной системы могут приводить к неприятным сюрпризам”, – предупреждает он. В качестве примера он рассказывает о недавнем случае, когда безвредный вирус мышиной оспы внезапно сделался смертоносным, после того как австралийские исследователи добавили в него ген одного из белков, имеющихся на поверхности мышиных яйцеклеток. Ученые пытались получить мышиный контрацептив, но вакцинация мышей модифицированным вирусом вызывала отключение целого отдела их иммунной системы71.

<<< Назад
Вперед >>>

Генерация: 0.624. Запросов К БД/Cache: 0 / 0
Вверх Вниз