Книга: Основы биоэтики
6.2. Генно-инженерные (трансгенные) организмы на службе у медицины
<<< Назад 6.1. Биотехнология, биобезопасность и генетическая инженерия: к истории вопроса |
Вперед >>> 6.3. Достижения генетической инженерии животных |
6.2. Генно-инженерные (трансгенные) организмы на службе у медицины
В настоящее время в мире, по данным Всемирной организации здравоохранения, насчитывается около 110 млн людей, страдающих диабетом. И эта цифра в ближайшие 25 лет может удвоиться. Диабет – тяжелое заболевание, которое вызывается нарушением работы поджелудочной железы, вырабатывающей гормон инсулин, необходимый для нормальной утилизации содержащихся в пище углеводов. На начальных стадиях развития болезни достаточно использовать меры профилактики, регулярно следить за уровнем сахара в крови, просто потреблять меньше сладкого. Однако приблизительно для 10 млн пациентов показана инсулиновая терапия: они вынуждены ежедневно вводить в кровь препараты этого гормона. Начиная с 20-х гг. прошлого века, для этих целей использовали инсулин, выделенный из поджелудочных желез свиней и телят. Животный инсулин в значительной степени аналогичен человеческому, однако между ними имеются и определенные отличия. Так, в молекуле инсулина свиньи в противовес человеческому в одной из цепей аминокислота треонин замещена аланином. Считается, что эти небольшие различия могут вызывать у отдельных пациентов серьезные осложнения (нарушение работы почек, расстройство зрения, аллергию). Кроме того, несмотря на высокую степень очистки, не исключена вероятность переноса вирусов от животных к людям. И, наконец, число больных диабетом растет так быстро, что обеспечить всех нуждающихся животным инсулином уже не представляется возможным. Заметим также, что это весьма дорогое лекарство.
Разработка технологии производства искусственного инсулина является поистине триумфом генетики. Сначала Ф. Сэнгер в 1955 г. с помощью специальных методов определил строение молекулы этого гормона, состав и последовательность аминокислот в ней. В 1963 г. молекулу инсулина синтезировали с помощью биохимических методов. Однако осуществить в промышленном масштабе столь дорогостоящий и сложный синтез, включающий 170 химических реакций, оказалось сложно.
Поэтому упор в дальнейших исследованиях был сделан на разработку технологии биологического синтеза гормона в клетках микроорганизмов, для чего использовали весь арсенал методов генетической инженерии. Зная последовательность аминокислот в молекуле инсулина, ученые рассчитали, какой должна быть последовательность нуклеотидов в гене, кодирующем этот белок, чтобы получилась нужная последовательность аминокислот. «Собрали» молекулу ДНК из отдельных нуклеотидов в соответствии с определенной последовательностью, «добавили» к ней регуляторные элементы, необходимые для экспрессии гена в прокариотическом организме Exoli, и встроили данную конструкцию в генетический материал этого микроба. В результате бактерия смогла вырабатывать две цепи молекулы инсулина, которые можно было в дальнейшем соединить с помощью химической реакции и получить полную молекулу инсулина.
Наконец, ученым удалось осуществить в клетках E.coli биосинтез молекулы проинсулина, а не только ее отдельных цепей. Молекула проинсулина после биосинтеза способна соответствующим образом преобразовываться (формируются дисульфидные связи между цепями А и В), превращаясь в молекулу инсулина. Эта технология имеет серьезные преимущества, поскольку различные этапы экстракции и выделения гормона сведены к минимуму. При разработке такой технологии была выделена информационная РНК проинсулина. Затем, используя ее в качестве матрицы, с помощью фермента обратной транскриптазы синтезировали комплиментарную ей молекулу ДНК, которая представляла собой практически точную копию натурального гена инсулина. После пришивания к гену необходимых регуляторных элементов и переноса конструкции в генетический материал Exoli стало возможным производить инсулин на микробиологической фабрике, по сути, в неограниченных количествах. Его испытания показали практически полную идентичность натуральному инсулину человека. Он намного дешевле препаратов животного инсулина, не вызывает осложнений.
Другая, не менее трагическая проблема здоровья человека, связанная с нарушением работы желез внутренней секреции, – выраженное замедление роста детей, приводящее к появлению так называемых лилипутов, карликов. Это заболевание вызвано недостаточной секрецией гормона роста – соматотропина, который вырабатывается гипофизом (железой, расположенной в нижней части мозга). До середины 80-х гг. XX в. эту болезнь пытались лечить путем введения в кровь пациентов препаратов гормона роста, выделенных из гипофиза умерших людей. Нет смысла объяснять, насколько сложно получить необходимое для терапии количество такого гормона. Помимо чисто технических (в гипофизе содержится очень небольшое количество гормона), финансовых (препарат получается немыслимо дорогим), этических и прочих проблем, имеется риск переноса пациентам опаснейших заболеваний, например, хорошо известного синдрома Кройцфельда – Якоби – коровьего бешенства. Для достижения положительного результата лечения соматотропин вводят внутримышечно три раза в неделю в дозах порядка 6—10 мг на килограмм веса пациента с возраста 4–5 лет до половой зрелости и даже далее. Из одного трупа можно получить лишь 4–6 мг препарата. Поэтому даже разработанные на государственном уровне специальные программы по производству соматотропина в таких странах, как США, Великобритания, Франция, не могли полностью удовлетворить спрос на этот препарат. Так, в США в 70—80-е гг. прошлого века ежегодно выделяли гипофиз у 60 000 трупов. Полученного соматотропина хватало для адекватного лечения лишь 1500 детей в год.
Ген, кодирующий образование гормона роста человека, был синтезирован искусственно и встроен в генетический материал E.coli подобно гену инсулина. В настоящее время проблема производства высококачественного, безопасного для здоровья пациентов соматотропина в необходимых количествах и при минимальных затратах полностью решена. Более того, с помощью технологии рекомбинантных ДНК получены штаммы микроорганизмов, способные синтезировать и другие факторы роста человеческого организма. Для целей сельского хозяйства большое значение имела организация производства гормона роста крупного рогатого скота (впервые – американской фирмой «Монсанто»). Его применение позволяет значительно (до 15 % и более) повысить удойность коров. Сам ген, кодирующий образование соматотропина, пытаются использовать в генетической инженерии животных для выведения пород, способных ускоренно расти. Так, получены обнадеживающие результаты на рыбах. Лососи с встроенным геном гормона роста способны достигать потребительских размеров за один год вместо двух в отличие от обычных рыб.
Для производства трансгенных медицинских препаратов в настоящее время используют не только специальным образом модифицированные микроорганизмы, но и культуры животных клеток. Так, биосинтез рекомбинантного фактора VIII человеческой крови позволяет эффективно решать проблему лечения больных гемофилией (пониженная свертываемость крови). До этого фактор VIII выделяли из крови доноров, что связано с риском заражения пациентов вирусными инфекциями типа гепатита. Производство трансгенного эритропоэтина (гормона, стимулирующего образование красных кровяных клеток человека) помогает бороться с различными анемиями. Ранее наиболее эффективным методом лечения анемии считалось частое переливание донорской крови, обходившееся очень дорого и также связанное с рисками.
<<< Назад 6.1. Биотехнология, биобезопасность и генетическая инженерия: к истории вопроса |
Вперед >>> 6.3. Достижения генетической инженерии животных |
- 6.1. Биотехнология, биобезопасность и генетическая инженерия: к истории вопроса
- 6.2. Генно-инженерные (трансгенные) организмы на службе у медицины
- 6.3. Достижения генетической инженерии животных
- 6.4. Основные факторы риска генно-инженерной деятельности для здоровья человека и принципы принятия мер предосторожности
- Вопросы для самопроверки
- Литература
- Глава 6. Этические проблемы применения новых генно-инженерных технологий
- Микроорганизмы в воде
- Человек и микроорганизмы
- Химия и микроорганизмы
- Микроорганизмы на службе химии
- § 67. Воздействие на организмы некоторых экологических факторов
- 8. Микроорганизмы и сельское хозяйство
- 4.4. Живые организмы как среда обитания
- Почва и микроорганизмы
- Трансгенные пробиотики
- 7. Где живут микроорганизмы?
- 2.3. Общие законы действия факторов среды на организмы