Книга: Биология. Общая биология. Базовый уровень. Учебник для 10–11 класс

3.19. Биотехнология: достижения и перспективы развития

<<< Назад
Вперед >>>

3.19. Биотехнология: достижения и перспективы развития

Вспомните!

Что такое биотехнология?

Какое значение для промышленности и сельского хозяйства имеет селекция микроорганизмов?

Биотехнология – это использование организмов, биологических систем или биологических процессов в промышленном производстве. Термин «биотехнология» получил широкое распространение с середины 70-х гг. XX в., хотя еще с незапамятных времен человечество использовало микроорганизмы в хлебопечении и виноделии, при производстве пива и в сыроварении. Любое производство, в основе которого лежит биологический процесс, можно рассматривать как биотехнологию. Генная, хромосомная и клеточная инженерия, клонирование сельскохозяйственных растений и животных – это различные аспекты биотехнологии.

Биотехнология позволяет не только получать важные для человека продукты, например антибиотики и гормон роста, этиловый спирт и кефир, но и создавать организмы с заранее заданными свойствами гораздо быстрее, чем с помощью традиционных методов селекции. Существуют биотехнологические процессы по очистке сточных вод, переработке отходов, удалению нефтяных разливов в водоемах, получению топлива. Эти технологии основаны на особенностях жизнедеятельности некоторых микроорганизмов.

Появляющиеся современные биотехнологии изменяют наше общество, открывают новые возможности, но одновременно создают определенные социальные и этические проблемы.

Генная инженерия. Удобными объектами биотехнологии являются микроорганизмы, имеющие сравнительно просто организованный геном, короткий жизненный цикл и обладающие большим разнообразием физиологических и биохимических свойств.

Одной из причин сахарного диабета является недостаток в организме инсулина – гормона поджелудочной железы. Инъекции инсулина, выделенного из поджелудочных желез свиней и крупного рогатого скота, спасают миллионы жизней, однако у некоторых пациентов приводят к развитию аллергических реакций. Оптимальным решением было бы использование человеческого инсулина. Методами генной инженерии ген инсулина человека был встроен в ДНК кишечной палочки. Бактерия начала активно синтезировать инсулин. В 1982 г. инсулин человека стал первым фармацевтическим препаратом, полученным с помощью методов генной инженерии.

Аналогичным способом в настоящее время получают гормон роста. Человеческий ген, встроенный в геном бактерий, обеспечивает синтез гормона, инъекции которого используются при лечении карликовости и восстанавливают рост больных детей почти до нормального уровня.

Так же, как у бактерий, с помощью методов генной инженерии можно изменять и наследственный материал эукариотических организмов. Такие генетически перестроенные организмы называют трансгенными или генетически модифицированными организмами (ГМО).

В природе существует бактерия, которая выделяет токсин, убивающий многих вредных насекомых. Ген, отвечающий за синтез этого токсина, был выделен из генома бактерии и встроен в геном культурных растений. К настоящему времени уже созданы устойчивые к вредителям сорта кукурузы, риса, картофеля и других сельскохозяйственных растений. Выращивание таких трансгенных растений, которые не требуют использования пестицидов, имеет огромные преимущества, потому что, во-первых, пестициды убивают не только вредных, но и полезных насекомых, а во-вторых, многие пестициды накапливаются в окружающей среде и оказывают мутагенное влияние на живые организмы (рис. 92).


Рис. 92. Страны, выращивающие трансгенные растения. Практически всю площадь посевов трансгенных культур занимают генетически модифицированные сорта четырех растений: сои (62 %), кукурузы (24 %), хлопчатника (9 %) и рапса (4 %). Уже созданы сорта трансгенного картофеля, помидоров, риса, табака, свеклы и других культур

Один из первых успешных экспериментов по созданию генетически модифицированных животных был произведен на мышах, в геном которых был встроен ген гормона роста крыс. В результате трансгенные мыши росли гораздо быстрее и в итоге были в два раза больше обычных мышей. Если этот опыт имел исключительно теоретическое значение, то эксперименты в Канаде имели уже явное практическое применение. Канадские ученые ввели в наследственный материал лосося ген другой рыбы, который активировал ген гормона роста. Это привело к тому, что лосось рос в 10 раз быстрее и набирал вес, в несколько раз превышающий норму.

Клонирование. Создание многочисленных генетических копий одного индивидуума с помощью бесполого размножения называют клонированием. У ряда организмов этот процесс может происходить естественным путем, вспомните вегетативное размножение у растений и фрагментацию у некоторых животных (§ 3.5). Если у морской звезды случайно оторвется кусочек луча, из него образуется новый полноценный организм (рис. 93). У позвоночных животных этот процесс естественным путем не происходит.

Впервые успешный эксперимент по клонированию животных был осуществлен исследователем Гёрдоном в конце 60-х гг. XX в. в Оксфордском университете. Ученый пересадил ядро, взятое из клетки эпителия кишки лягушки-альбиноса, в неоплодотворенную яйцеклетку обычной лягушки, чье ядро перед этим было разрушено. Из такой яйцеклетки ученому удалось вырастить головастика, превратившегося затем в лягушку, которая была точной копией лягушки-альбиноса. Таким образом, впервые было показано, что информации, содержащейся в ядре любой клетки, достаточно для развития полноценного организма.

В дальнейшем исследования, проведенные в Шотландии в 1996 г., привели к успешному клонированию овцы Долли из клетки эпителия молочной железы матери (рис. 94).

Клонирование представляется перспективным методом в животноводстве. Например, при разведении крупного рогатого скота используется следующий прием. На ранней стадии развития, когда клетки эмбриона еще не специализированы, зародыш разделяют на несколько частей. Из каждого фрагмента, помещенного в приемную (суррогатную) мать, может развиться полноценный теленок. Таким способом можно создать множество идентичных копий одного животного, обладающего ценными качествами.


Рис. 93. Регенерация морской звезды из одного луча


Рис. 94. Клонирование овцы Долли

Для специальных целей можно также клонировать отдельные клетки, создавая культуры тканей, которые в подходящих средах способны расти бесконечно долго. Клонированные клетки служат заменой лабораторным животным, так как на них можно изучать воздействие на живые организмы различных химических веществ, например лекарственных препаратов.

При клонировании растений используется уникальная особенность растительных клеток. В начале 60-х гг. XX в. впервые было показано, что клетки растений, даже после достижения зрелости и специализации, в подходящих условиях способны давать начало целому растению (рис. 95). Поэтому современные методы клеточной инженерии позволяют осуществлять селекцию растений на клеточном уровне, т. е. отбирать не взрослые растения, обладающие теми или иными свойствами, а клетки, из которых потом выращивают полноценные растения.


Рис. 95. Этапы клонирования растений (на примере моркови)

Этические аспекты развития биотехнологии. Использование современных биотехнологий ставит перед человечеством много серьезных вопросов. Не может ли ген, встроенный в трансгенные растения томата, при съедании плодов мигрировать и встраиваться в геном, например, бактерий, живущих в кишечнике человека? Не может ли трансгенное культурное растение, устойчивое к гербицидам, болезням, засухе и другим стрессовым факторам, при перекрестном опылении с родственными дикими растениями передать эти же свойства сорнякам? Не получатся ли при этом «суперсорняки», которые очень быстро заселят сельскохозяйственные земли? Не попадут ли случайно мальки гигантского лосося в открытое море, и не нарушит ли это баланс в природной популяции? Способен ли организм трансгенных животных выдержать ту нагрузку, которая возникает в связи с функционированием чужеродных генов? И имеет ли право человек переделывать живые организмы ради собственного блага?

Эти и многие другие вопросы, связанные с созданием генетически модифицированных организмов, широко обсуждаются специалистами и общественностью всего мира. Созданные во всех странах специальные контролирующие органы и комиссии утверждают, что, несмотря на существующие опасения, вредного воздействия ГМО на природу зафиксировано не было.

В 1996 г. Совет Европы принял Конвенцию о правах человека при использовании геномных технологий в медицине. Центральное внимание в документе уделено этике применения таких технологий. Утверждается, что ни одна личность не может быть подвергнута дискриминации на основе информации об особенностях ее генома.

Введение в клетки человека чужеродного генетического материала может иметь отрицательные последствия. Неконтролируемое встраивание чужой ДНК в те или иные участки генома может привести к нарушению работы генов. Риск использования генотерапии при работе с половыми клетками гораздо выше, чем при использовании соматических клеток. При внесении генетических конструкций в половые клетки может возникнуть нежелательное изменение генома будущих поколений. Поэтому в международных документах ЮНЕСКО, Совета Европы, Всемирной организации здравоохранения (ВОЗ) подчеркивается, что всякое изменение генома человека может производиться лишь на соматических клетках.

Но, пожалуй, наиболее серьезные вопросы возникают в связи с теоретически возможным клонированием человека. Исследования в области человеческого клонирования сегодня запрещены во всех странах в первую очередь по этическим соображениям. Становление человека как личности базируется не только на наследственности. Оно определяется семейной, социальной и культурной средой, поэтому при любом клонировании воссоздать личность невозможно, как невозможно воспроизвести все те условия воспитания и обучения, которые сформировали личность его прототипа (донора ядра). Все крупные религиозные конфессии мира осуждают любое вмешательство в процесс воспроизводства человека, настаивая на том, что зачатие и рождение должно происходить естественным путем.

Эксперименты по клонированию животных поставили перед научной общественностью ряд серьезных вопросов, от решения которых зависит дальнейшее развитие этой области науки. Овечка Долли не была единственным клоном, полученным шотландскими учеными. Клонов было несколько десятков, а в живых осталась только Долли. В последние годы совершенствование техники клонирования позволило увеличить процент выживших клонов, но их смертность все еще очень высока. Однако существует проблема еще более серьезная с научной точки зрения. Несмотря на победное рождение Долли, остался неясным ее реальный биологический возраст, связанные с ним проблемы со здоровьем и относительно ранняя смерть. По мнению ученых, использование ядра клетки немолодой шестилетней овцы-донора сказалось на судьбе и здоровье Долли.

Необходимо существенно повысить жизнеспособность клонированных организмов, выяснить, влияет ли использование конкретных методик на продолжительность жизни, здоровье и плодовитость животных. Очень важно свести к минимуму риск дефектного развития реконструированной яйцеклетки.

Активное внедрение биотехнологий в медицину и генетику человека привело к появлению специальной науки – биоэтики. Биоэтика – наука об этичном отношении ко всему живому, в том числе и к человеку. Нормы этики выдвигаются сейчас на первый план. Те нравственные заповеди, которыми человечество пользуется века, к сожалению, не предусматривают новых возможностей, привносимых в жизнь современной наукой. Поэтому людям необходимо обсуждать и принимать новые законы, учитывающие новые реальности жизни.

Вопросы для повторения и задания

1. Что такое биотехнология?

2. Какие проблемы решает генная инженерия? С какими трудностями связаны исследования в этой области?

3. Как вы думаете, почему селекция микроорганизмов приобретает в настоящее время первостепенное значение?

4. Приведите примеры промышленного получения и использования продуктов жизнедеятельности микроорганизмов.

5. Какие организмы называют трансгенными?

6. В чем преимущество клонирования по сравнению с традиционными методами селекции?

Вопросы для обсуждения

Глава «Организм»

«Организм – единое целое. Многообразие организмов»

1. Как вы считаете, почему до сих пор науке неизвестно точное количество видов организмов, живущих на нашей планете?

2. В клетках каких организмов существуют органоиды специального назначения? Какие функции они выполняют?

3. Подумайте, могут ли у многоклеточных организмов отсутствовать ткани и органы.

«Обмен веществ и превращение энергии»

1. Как связаны между собой фотосинтез и проблема обеспечения продовольствием населения Земли?

2. Объясните, почему потребление избыточного количества пищи приводит к ожирению.

3. Почему энергетический обмен не может существовать без пластического обмена?

4. Можно ли считать, что фотосинтез включает в себя одновременно два процесса – ассимиляцию и диссимиляцию?

5. Приведите примеры использования особенностей метаболизма живых организмов в медицине, сельском хозяйстве и других отраслях.

«Размножение»

1. Как вы считаете, в чем преимущество двойного оплодотворения у покрытосеменных растений по сравнению с оплодотворением у голосеменных?

2. Почему при вегетативном размножении не наблюдается расщепление признаков в потомстве гибридов?

3. Подумайте, в чем отличие естественного вегетативного размножения от искусственного.

4. Организм развился из неоплодотворенной яйцеклетки. Являются ли его наследственные признаки точной копией признаков материнского организма?

5. Как вы считаете, какая форма размножения обеспечивает лучшую приспособляемость к изменениям окружающей среды?

«Индивидуальное развитие (онтогенез)»

1. Почему из равноценных в начале развития зародышевых клеток образуются разные ткани и органы с различными свойствами?

2. Какое значение в приспособлении к условиям жизни имеет развитие с превращением?

3. Какое значение в эволюции человека имело удлинение дорепродуктивного периода?

4. Для каких организмов понятия «клеточный цикл» и «онтогенез» совпадают?

«Наследственность и изменчивость»

1. В чем заключается преимущество диплоидности по сравнению с гаплоидным состоянием?

2. Составьте и решите задачи на моногибридное и дигибридное скрещивания.

3. Митохондрии содержат ДНК, гены которой кодируют синтез многих белков, необходимых для построения и функционирования этих органоидов. Подумайте, как будут наследоваться эти внеядерные гены.

4. Объясните с позиции генетики, почему среди мужчин гораздо больше дальтоников, чем среди женщин.

5. Как вы считаете, могут ли факторы внешней среды повлиять на развитие организма, несущего летальную мутацию?

6. Какой бы вы предложили поставить эксперимент, чтобы доказать генетическую обусловленность поведенческих реакций?

7. Как вы считаете, в чем заключается опасность близкородственных браков?

8. Подумайте, в чем особенность изучения наследования признаков у человека.

9. Почему хозяйственная деятельность человека увеличивает мутагенное влияние среды?

10. Может ли комбинативная изменчивость проявиться в отсутствие полового процесса?

«Основы селекции. Биотехнология»

1. Что схожего и чем отличаются методы селекции растений и животных?

2. Почему для каждого региона нужны свои сорта растений и животных?

3. Из большого разнообразия видов животных, обитающих на Земле, человек отобрал для одомашнивания сравнительно немного видов. Как вы считаете, чем это объясняется?

4. Гетерозис в последующих поколениях обычно не сохраняется, затухает. Почему это происходит?

5. Как вы считаете, может ли применяться массовый отбор при разведении животных? Докажите свое мнение.

6. Какое значение для селекции растений имеет знание центров происхождения культурных растений?

7. Какие перспективы в развитии народного хозяйства открывает использование трансгенных животных?

8. Может ли современное человечество обойтись без биотехнологии?

<<< Назад
Вперед >>>
Оглавление статьи/книги

Генерация: 0.502. Запросов К БД/Cache: 0 / 0
Вверх Вниз