Книга: Высший замысел

6. Выбирая нашу вселенную

<<< Назад
Вперед >>>

6. Выбирая нашу вселенную

В мифологии народа бушонго, живущего в Центральной Африке, говорится, что изначально существовали только темнота, вода и великий бог Бумба. Однажды Бумбу из-за боли в животе стошнило, и он изверг солнце. Через некоторое время солнце высушило часть воды, в результате чего возникла суша. Но живот у Бумбы все еще болел, и его продолжало тошнить. Так появились луна, звезды, затем некоторые животные: леопард, крокодил, черепаха — и наконец человек. Племена майя на территории Мексики в Центральной Америке описывают похожую картину, предшествующую сотворению мира: существовали только море, небо и Творец. В одной из легенд майя Творец, несчастный оттого, что некому было прославлять его, создал землю, горы, деревья и большинство животных. Но животные не умели разговаривать, и тогда он решил создать людей. Сначала он сделал их из грязи и земли, но они говорили всякую ерунду. Оставив их разваливаться, он предпринял вторую попытку, на этот раз вырезав людей из дерева. Но эти люди получились тупыми. Он решил уничтожить их, но они сбежали в лес, получив по пути повреждения, которые немного изменили их, превратив в существа, называемые сегодня обезьянами. После этого фиаско Творец нашел, наконец, подходящий состав и создал первых людей из белых и желтых зерен кукурузы. Сегодня из кукурузы мы делаем этиловый спирт, но так и не можем потягаться с достижением Творца, создавшего людей, которые этот спирт пьют.

Подобные мифы о сотворении мира пытались ответить на вопросы, которые и мы задаем в этой книге: почему существует Вселенная и почему она такая, как есть. Наша способность обращаться к этим вопросам постоянно возрастала в течение столетий со времен древних греков, а особенно сильно выросла за прошлое столетие. И теперь, вооруженные знаниями из предыдущих глав, мы готовы предложить возможный ответ на эти вопросы.

Даже в древние времена могло быть очевидным, что либо Вселенная совсем недавнее творение, либо люди существовали на протяжении лишь очень краткого периода космической истории. Поскольку знания и техника людей развивались весьма быстро, то если бы люди существовали миллионы лет, человечество в своем развитии ушло бы гораздо дальше.

Согласно Ветхому Завету, Бог создал Адама и Еву всего через шесть дней после сотворения мира. Епископ Ашшер, Примас всей Ирландии с 1625 по 1656 год, определил начало мира более точно: в 9 часов утра 27 октября 4004 года до н. э. Мы придерживаемся другого мнения: люди появились сравнительно недавно, но сама Вселенная зародилась много раньше — около 13,7 миллиарда лет назад.

Первое действительно научное свидетельство того, что Вселенная имела начало, появилось в 1920-х годах. Как мы уже говорили в главе 3, в то время большинство ученых полагали, что Вселенная статична и существовала всегда. Свидетельство обратного было косвенным, основанным на наблюдениях американского астронома Эдвина Хаббла, которые он выполнил на 100-дюймовом телескопе обсерватории Маунт-Вилсон, расположенной на холмах над Пасаденой в Калифорнии. Проанализировав спектры света, приходящего от далеких галактик, Хаббл определил, что почти все галактики удаляются от нас, и чем дальше они находятся, тем быстрее удаляются. В 1929 году он опубликовал закон об отношении скорости их удаления к расстоянию от нас и сделал вывод, что Вселенная расширяется. Если это так, то в прошлом Вселенная должна была быть меньше. Действительно, если экстраполировать процесс в далекое прошлое, то вся материя и энергия во Вселенной должны были быть сконцентрированы в совсем крошечном объеме с невообразимой плотностью и температурой. Если же мы заглянем в прошлое достаточно далеко, то обнаружим, что должен быть тот момент, с которого все началось, — сегодня мы называем это событие Большим взрывом.

Представление о том, как Вселенная расширяется, имеет некоторую тонкость. Например, мы не имеем в виду, что Вселенная расширяется таким образом, как, скажем, кто-то может расширить свой дом, снося стену и пристраивая новую комнату на месте, где раньше стоял величественный дуб. Пространство, скорее, растягивается — расстояния между любыми двумя точками внутри Вселенной постоянно увеличиваются.

Такое представление возникло в 1930-х годах в обстановке больших противоречий, но одним из наиболее удачных способов для иллюстрации процесса расширения Вселенной до сих пор является метафора, предложенная в 1931 году английским астрономом Артуром Эддингтоном (1882–1944) из Кембриджского университета. Он уподобил Вселенную поверхности надуваемого резинового шарика, а все галактики — точкам на этой поверхности. Эта картина ясно показывает, почему дальние галактики удаляются быстрее, чем ближние. Например, если радиус шара увеличивается вдвое каждый час, то и расстояние между двумя галактиками на шаре будет каждый час удваиваться.

Если в какое-то время две галактики находятся в одном дюйме друг от друга, то через час они окажутся в двух дюймах друг от друга, то есть они будут выглядеть удаляющимися одна от другой со скоростью один дюйм в час. Но если начальное расстояние между ними было два дюйма, то час спустя между ними будет уже четыре дюйма, — следовательно, скорость их взаимного удаления будет равна двум дюймам в час. Это как раз то, что и обнаружил Хаббл: чем галактика дальше, тем быстрее она от нас удаляется.

Важно понимать, что расширение пространства не влияет на размер материальных объектов, таких как галактики, звезды, яблоки, атомы и другие тела, удерживаемые вместе той или иной силой. Например, если мы обведем в круг группу галактик на шаре, этот круг не будет расширяться вместе с шаром. Поскольку галактики удерживаются гравитационными силами, при увеличении шара нарисованный нами круг и галактики внутри него будут сохранять свои размеры и очертания. Это нужно учитывать, потому что мы можем выявить расширение, только если наши измерительные инструменты имеют фиксированные размеры. Если бы все свободно расширялось, то мы сами, наша измерительная рулетка и наши лаборатории расширялись бы пропорционально расширению пространства, и мы бы не заметили никакой разницы.

Для Эйнштейна утверждение о расширении Вселенной оказалось новостью. Но предположение о возможности того, что галактики удаляются друг от друга, было высказано им на теоретических предпосылках еще за несколько лет до статей Хаббла. В 1922 году российский физик и математик Александр Фридман (1888–1925) рассмотрел, что должно произойти в модельной Вселенной, основанной на двух допущениях, значительно упрощающих математические расчеты: что Вселенная выглядит одинаково в любом направлении и что она выглядит так из любой точки наблюдения. Сейчас мы знаем, что первое допущение Фридмана не совсем верно — к счастью, Вселенная не везде одинакова! Если мы посмотрим в одну сторону, то можем увидеть Солнце, в другую — Луну или стаю мигрирующих летучих мышей. Но Вселенная выглядит примерно одинаковой в любом направлении, если рассматривать ее в гораздо более крупном масштабе — даже крупнее, чем расстояния между галактиками. Это что-то вроде взгляда на лес с высоты птичьего полета. Если вы достаточно близко, то можете увидеть отдельные листья или хотя бы деревья и промежутки между ними. Но если вы так высоко, что большим пальцем можете заслонить квадратную милю леса, то деревья сольются в единое зеленое пятно. И в таком масштабе мы бы сказали, что лес однороден.


Вселенная в виде воздушного шарика. Удаление других галактик от нас можно представить, вообразив, что весь космос распластался по поверхности постоянно раздувающегося гигантского воздушного шарика.

Основываясь на своих допущениях, Фридман смог найти решение уравнений Эйнштейна, при котором Вселенная расширялась именно так, как вскоре предстояло обнаружить Хабблу. В частности, в модели Фридмана Вселенная начинается с нулевого размера и расширяется до тех пор, пока гравитационное притяжение не остановит это расширение и в конечном счете не приведет ее к сжатию внутрь самой себя. (Как оказалось, есть два других типа решений уравнений Эйнштейна, тоже удовлетворяющих допущениям модели Фридмана: одно — соответствующее Вселенной, в которой расширение продолжается вечно, хотя и с небольшим замедлением, а другое — для Вселенной, в которой скорость расширения постоянно замедляется, стремясь к нулю, но никогда его не достигая.) Фридман умер через несколько лет после публикации своей работы, и его идеи оставались почти неизвестными вплоть до периода, последовавшего за открытием Хаббла. Но в 1927 году бельгийский профессор астрофизики, римско-католический священник Жорж Леметр (1894–1966) предложил похожую идею: если проследить историю мира назад, в прошлое, то Вселенная будет становиться все меньше и меньше, пока не наступит событие, приведшее к ее творению, — то, что мы сегодня называем Большим взрывом.

Сценарий с Большим взрывом нравится далеко не всем. И даже сам термин «Большой взрыв» придумал в 1949 году кембриджский астрофизик Фред Хойл (1915–2001), который считал, что Вселенная расширялась всегда, и использовал новый термин как иронический. Первые непосредственные наблюдения, подтверждающие эту идею, появились только в 1965 году, после обнаружения слабого микроволнового фонового излучения, исходившего от всего космоса. Это космическое микроволновое фоновое излучение (КМФИ, или реликтовое излучение) такое же, как в вашей микроволновке, но мощность его гораздо меньше. Вы можете наблюдать КМФИ, настроив телевизор на неработающий канал, — несколько процентов от увиденного на экране «снега» будет вызвано этим излучением. КМФИ было открыто случайно двумя американскими учеными из корпорации «Белл Лабз», пытавшимися устранить шум от своей микроволновой антенны. Сначала они думали, что этот шум вызван статическим электричеством, источником которого могли быть кучи птичьего помета — от голубей, ночевавших внутри антенны, имеющей вид огромного раструба. Но оказалась, что у их проблемы более интересное происхождение: КМФИ — это излучение, оставшееся после очень горячей и плотной ранней Вселенной, которая существовала вскоре после Большого взрыва. По мере расширения она остывала, пока излучение не превратилось в тот слабый остаток, который мы наблюдаем сегодня. В настоящее время эти микроволны смогут разогреть вашу пищу только до — 270 °C, что лишь на три градуса выше абсолютного нуля и не очень подходит для приготовления попкорна.

Астрономы обнаружили также и другие свидетельства, подтверждающие связь Большого взрыва с горячей и крохотной ранней Вселенной. Так, примерно в течение одной минуты после взрыва температура Вселенной была выше, чем в центре типичной звезды. В это время вся Вселенная работала как термоядерный реактор. Реакции прекратились, когда Вселенная достаточно расширилась и остыла, но, согласно теории, к этому времени она должна была состоять в основном из водорода и на 23 % из гелия, с небольшой примесью лития и бериллия (все более тяжелые элементы появились позже внутри звезд). Расчеты хорошо согласуются с теми количествами гелия, водорода, лития и бериллия, которые мы наблюдаем.

Измерения содержания гелия и КМФИ стали убедительными свидетельствами в пользу сценария Большого взрыва как правдоподобного описания ранней Вселенной. Но не нужно воспринимать Большой взрыв буквально, то есть думать, что теория Эйнштейна дает истинную картину происхождения Вселенной. Потому что общая теория относительности предсказывает лишь, что должна была иметься точка во времени, когда температура, плотность и кривизна Вселенной были бесконечны, — ситуация, которую математики называют сингулярностью. Для физиков это означает, что в этой точке теория Эйнштейна перестает действовать и потому не может быть использована для предсказания того, как Вселенная началась. Эта теория пригодна только для рассмотрения последующего развития мира. Поэтому, хотя мы можем пользоваться уравнениями общей теории относительности и нашими наблюдениями неба, чтобы узнать, какой была Вселенная в ее раннем возрасте, было бы неверным распространять сценарий Большого взрыва на весь путь, вплоть до самого начала.

К вопросу о происхождении Вселенной мы вскоре вернемся, но прежде несколько слов о первой фазе ее расширения. Физики называют ее инфляцией. Если вы не живете в Зимбабве, где денежная инфляция недавно превысила 200 000 000 процентов, то этот термин не должен вас шокировать. Но даже по самым осторожным оценкам во время той космологической инфляции Вселенная расширилась в 1 000 000 000 000 000 000 000 000 000 000 раз за 0,000 000 000 000 000 000 000 000 000 000 000 01 долю секунды. Это как если бы монетка диаметром 1 см мгновенно стала в десять миллионов раз шире нашей Галактики — Млечного Пути. Такое явление может показаться нарушением теории относительности, которая гласит, что скорость света не может быть превышена ничем, но это ограничение скорости неприменимо к расширению самого пространства.

Впервые предположение, что такой эпизод инфляции мог произойти, было выдвинуто в 1980 году на основе рассуждений, выходящих за рамки общей теории относительности Эйнштейна и с учетом аспектов квантовой теории. Поскольку у нас нет полной квантовой теории гравитации, детали все еще прорабатываются, и физики не имеют полной уверенности в том, как именно происходила инфляция. Но согласно теории, расширение, вызванное инфляцией, не было бы полностью однородным, как предсказано традиционной моделью Большого взрыва. Такие неоднородности привели бы к крошечным различиям в температуре КМФИ в различных направлениях. Эти отклонения слишком малы, поэтому их невозможно было заметить с помощью тех приборов, которыми пользовались в 1960-е годы. Впервые их обнаружили в 1992 году спутником СОВЕ, запущенным NASA, а позднее они были измерены пришедшим ему на смену в 2001 году спутником WMAP. В результате этого теперь мы уверены, что инфляция действительно была.

Хотя крохотные отклонения в КМФИ представляют собой доказательство инфляции, но, как ни странно, одна из причин того, что инфляция является важной концепцией, — это почти полная однородность температуры КМФИ. Если вы нагреете одну часть объекта до температуры более высокой, чем его окружение, и подождете, то горячее пятно будет охлаждаться, а окружение нагреваться, пока температура не уравняется. Таким образом, можно ожидать, что в конце концов Вселенная примет однородную температуру. Но этот процесс требует времени, и если бы не произошло инфляции, то в истории Вселенной не хватило бы времени, чтобы нагреть расположенные далеко друг от друга области до равной температуры, учитывая, что скорость такой передачи тепла ограничена скоростью света. Период очень быстрого расширения (гораздо быстрее скорости света) устраняет эту трудность, так как тогда имелось бы достаточно времени, чтобы произошло выравнивание температуры в пределах весьма крошечной доинфляционной ранней Вселенной.

Инфляция объясняет природу взрыва при Большом взрыве, по крайней мере в том смысле, почему расширение, коим он является, было гораздо интенсивнее, чем расширение, предсказанное традиционной теорией Большого взрыва с точки зрения общей теории относительности для того временного интервала, в котором произошла инфляция. Проблема в том, что, для того чтобы наши теоретические модели инфляции работали, начальное состояние Вселенной должно было быть установлено весьма специфическим путем, который почти невероятен. Так что традиционная теория инфляции решает одни вопросы, но ставит другие, а именно: необходимость весьма специфического начального состояния. Этот вопрос нулевого времени не устранен в теории создания Вселенной, которую мы сейчас опишем.

Поскольку мы не можем описать сотворение мира при помощи общей теории относительности Эйнштейна, то, если мы хотим описать происхождение Вселенной, общую теорию относительности надо заменить более полной теорией. Можно ожидать, что более полная теория все равно необходима, даже если бы общая теория относительности не рухнула, поскольку она не учитывает мелкомасштабные структуры материи, подчиняющиеся квантовой теории. В главе 4 мы упоминали, что для большинства практических нужд квантовая теория не имеет существенного значения при исследовании крупномасштабной структуры Вселенной, поскольку эта теория применяется для описания природы на микроуровнях. Но если вернуться в чрезвычайно далекое прошлое, то обнаружится, что размер Вселенной выражается в так называемых планковских единицах, применяющихся для сверхмалых величин. Поперечник Вселенной в то время составлял бы одну миллиардную триллионной триллионной доли сантиметра, а в этом масштабе квантовую теорию необходимо принимать во внимание. И хотя у нас еще нет полной квантовой теории гравитации, мы знаем, что начало Вселенной было квантовым событием. В результате, когда мы объединили квантовую теорию с общей теорией относительности (по крайней мере, временно), чтобы получить теорию инфляции, и хотим вернуться еще дальше, чтобы понять происхождение Вселенной, мы должны объединить все наши знания по общей теории относительности с квантовой теорией.


Искривление пространства. Материя и энергия искривляют пространство, изменяя траектории движения объектов.

Чтобы разобраться, как это работает, нам нужно понять принцип, по которому гравитация искривляет пространство и время. Наглядно изобразить искривление пространства проще, чем искривление времени. Представьте себе, что поверхность бильярдного стола — это Вселенная. Такая поверхность представляет собой плоское пространство, по крайней мере когда мы примем во внимание только два измерения. Если вы покатите по столу шар, он будет двигаться по прямой. Но если стол будет где-то искривлен или на нем будет впадина (как показано на иллюстрации), то траектория движения шара отклонится от прямой.

Можно легко заметить, как в этом примере искривляется бильярдный стол, потому что он изгибается внутрь или наружу в третьем измерении, которое мы можем видеть. Представить искривление пространства-времени в нашей Вселенной труднее, поскольку мы не можем выйти из нашего собственного пространства-времени, чтобы увидеть это искривление со стороны. Но искривление может быть выявлено, даже если вы и не в состоянии оказаться снаружи и взглянуть на него в масштабе более крупного пространства. Его можно обнаружить изнутри того же самого пространства. Представьте себе микроскопического муравья, для которого пространство ограничено поверхностью стола. Далее не имея возможности покинуть стол, муравей может выявить искривление путем точного определения расстояний. Например, длина окружности в плоском пространстве всегда чуть больше, чем троекратная длина его диаметра (точная величина получается умножением диаметра на л). Но если муравей пойдет напрямик с одной стороны окружности, очерчивающей впадину на столе (см. ил., с. 151), на другую ее сторону, то он обнаружит, что расстояние до дальнего края больше, чем ожидаемая одна треть длины окружности. В случае же, если впадина достаточно глубока, муравей может даже обнаружить, что путь вокруг короче, чем напрямик. То же самое справедливо и относительно искривления пространства в нашей Вселенной: это искривление вытягивает или сжимает расстояния между точками пространства, изменяя его геометрию или форму так, что это можно измерить изнутри Вселенной. Искривление времени растягивает или сжимает интервалы времени аналогичным образом.

Вооружившись этими идеями, давайте вернемся к вопросу о том, как начиналась Вселенная. Мы можем говорить о пространстве и времени раздельно (как мы уже и поступали в этом обсуждении), когда рассматриваем ситуации с низкими скоростями и слабой гравитацией. Вообще же время и пространство могут оказаться тесно переплетенными, и потому процессы их растягивания и сжатия тоже в какой-то степени смешиваются. Это смешивание играло важную роль в ранней Вселенной и является ключом к пониманию начала времени.


Искривление пространства-времени. Материя и энергия искривляют время, из-за чего временное измерение переплетается с пространственным.

Вопрос о начале времени отчасти напоминает вопрос о крае мира. Когда люди представляли себе мир плоским, они задумывались, не выльется ли море через край. Это было проверено на опыте, и оказалось, что можно обойти мир вокруг и никуда не упасть. Вопрос о том, что же происходит на краю мира, решился, когда люди поняли, что мир представляет собой не плоскость, а искривленную поверхность. Время, однако, выглядело похожим на образцовый железнодорожный путь. Если бы у него было начало, то должен был бы иметься некто (то есть Бог), кто запустил бы движение поездов. Хотя общая теория относительности Эйнштейна объединила время и пространство в виде пространства-времени и включила в рассмотрение определенное смешивание пространства и времени, время по-прежнему отличается от пространства и либо имеет начало и конец, либо длится вечно. Однако как только мы добавляем эффекты квантовой теории к теории относительности, в предельных случаях искривление может оказаться столь существенным, что время поведет себя как другое пространственное измерение.

В ранней Вселенной — когда она была столь малой, что ею могли управлять как общая теория относительности, так и квантовая теория, — фактически имелось четыре измерения в пространстве и ни одного во времени. Это означает, что когда мы говорим о начале Вселенной, то касаемся тонкого вопроса: ведь когда мы смотрим назад, на самую раннюю Вселенную, то времени в нашем обычном понимании там не существовало! Мы должны признать, что наши привычные представления о пространстве и времени неприменимы к самой ранней Вселенной. Это за пределами нашего обычного понимания, но не за пределами нашего воображения или нашей математики. Если в ранней Вселенной все четыре измерения вели себя как пространственные, то что же происходит с началом времени?

Осознание того, что время может вести себя как еще одно направление в пространстве, дает возможность избавиться от той проблемы, что у времени должно быть начало, подобно тому как мы избавились от представления о крае мира. Предположим, что начало Вселенной — это нечто вроде Южного полюса Земли, а градусы широты играют роль времени. Окружности с постоянной широтой (на географической карте они называются параллелями) будут изображать размер Вселенной. По мере движения от Южного полюса на север эти окружности расширяются. Вселенная началась как точка на Южном полюсе, но Южный полюс мало чем отличается от любой другой точки. Спрашивать, что было до начала Вселенной, станет бессмысленно, потому что южнее Южного полюса ничего нет. В этом примере пространство-время не имеет границы — на Южном полюсе законы природы такие же, как и в других местах. Аналогично этому, когда общую теорию относительности объединяют с квантовой теорией, вопрос о том, что произошло до начала Вселенной, выглядит бессмысленным. Это представление о том, что истории Вселенной должны иметь вид замкнутых поверхностей без границ, называется условием безграничности.

В течение столетий многие, включая Аристотеля, чтобы избежать вопроса, как возникла Вселенная, полагали, что она должна была существовать всегда. Другие считали, что Вселенная имела начало, и использовали это как аргумент для доказательства бытия Бога. Понимание того, что время ведет себя подобно пространству, дает новую альтернативу. Это развеивает вековое возражение по поводу того, что Вселенная имела начало, но также означает, что началом Вселенной управляли научные законы и не было нужды в том, чтобы ее привел в движение некий Бог.

Если происхождение Вселенной было квантовым событием, оно должно точно описываться фейнмановской суммой историй. Однако непросто применить квантовую теорию ко всей Вселенной, где наблюдатели — часть наблюдаемой системы. В главе 4 мы видели, как частицы материи, пролетевшие через двухщелевую преграду, создали интерференционный узор, подобно волнам на воде. Фейнман объяснил это тем, что частица не имеет единственной истории, то есть, двигаясь из начальной точки А в конечную точку В, она следует не по одной определенной траектории, а одновременно по всем возможным траекториям, соединяющим эти точки. С такой позиции интерференция не удивительна, потому что частица, например, может проходить одновременно через обе щели и интерферировать сама с собой, без взаимодействия с другими частицами. Применительно к движению частицы метод Фейнмана говорит нам, что для вычисления вероятности попадания частицы в любую конечную точку нужно рассмотреть все возможные истории, по которым частица могла проследовать из начальной точки в конечную. Методы Фейнмана можно использовать, чтобы рассчитать квантовые вероятности для наблюдений Вселенной. Если их применить к Вселенной в целом, то не может быть никакой точки А, поэтому мы сложим все истории, которые удовлетворяют условию безграничности и заканчиваются во Вселенной, наблюдаемой нами сегодня.

В таком понимании Вселенная появилась самопроизвольно и начала развиваться всеми возможными путями. Большинство из них относится к другим вселенным. Хотя некоторые из тех вселенных похожи на нашу, большинство из них сильно отличаются от нее, причем отличаются не только в деталях (таких, например, как действительно ли Элвис Пресли умер молодым или подают ли морковь на десерт), главное — они отличаются даже своими очевидными законами природы. В действительности существует множество вселенных с множеством различных наборов физических законов. Кое-кто делает великую загадку из этой идеи, которую иногда называют концепцией мультивселенной, но это всего лишь иные выражения фейнмановской суммы по всем историям.

Чтобы представить себе это, изменим предложенную Эддингтоном аналогию с надувным шариком и вместо этого представим расширяющуюся Вселенную в виде поверхности пузыря. Наша картина самопроизвольного квантового возникновения Вселенной будет тогда немного напоминать появление пузырьков пара в кипящей воде. Множество крошечных пузырьков появляется, а потом снова исчезает. Они подобны мини-вселенным, которые расширяются, но тут же лопаются, будучи все еще микроскопического размера. Эти пузырьки представляют собой возможные альтернативные вселенные, но они не вызывают большого интереса, так как их жизнь слишком коротка, чтобы дать развиться галактикам и звездам, не говоря уж о разумной жизни. Однако некоторые пузырьки вырастают до столь крупных размеров, что уже не лопаются. Они будут продолжать расширяться со всё возрастающей скоростью и образуют пузырьки пара, которые мы можем видеть. Такие пузырьки соответствуют вселенным, начинающим расширение при постоянно растущей скорости, — иными словами, вселенным в состоянии инфляции.


Мультивселенная. Квантовые флуктуации ведут к появлению крохотных вселенных из ничего. Некоторые из них достигают критического размера, затем, благодаря инфляции, расширяются, формируя галактики, звезды и — по крайней мере в одном случае — существ вроде нас.

Как мы уже говорили, вызванное инфляцией расширение вселенных не совсем однородно. В сумме по историям есть лишь одна полностью однородная и регулярная история, и она будет иметь наибольшую вероятность. Но и многие другие, лишь слегка неоднородные, будут иметь почти такие же вероятности. Вот почему инфляция предсказывает, что ранняя Вселенная, скорее всего, была слегка неоднородной, что соответствует тем небольшим различиям в интенсивности, которые были обнаружены у космического микроволнового фонового излучения (КМФИ). С неоднородностями в ранней Вселенной нам повезло. Почему же повезло? Да потому что однородность хороша, если вы не хотите, чтобы сливки отделились от молока, но однородная вселенная — скучная вселенная. Неоднородности в ранней Вселенной важны потому, что если некоторые области имеют чуть большую плотность, чем остальные, то гравитационное притяжение избыточной плотности замедлит расширение этой области по сравнению с окружающими. Поскольку сила гравитации медленно стягивает материю, это в конечном счете может привести к коллапсу и образованию галактик и звезд, что повлечет за собой появление планет и по крайней мере в одном случае — людей. Поэтому посмотрите внимательно на карту неба в микроволновом диапазоне. Это проектный чертеж всех структур во Вселенной. Мы являемся продуктом квантовых флуктуаций в очень ранней Вселенной. Верующий человек мог бы сказать об этом: Бог действительно играет в кости со Вселенной.

Эта идея приводит к представлению о Вселенной, которое глубоко отличается от традиционной концепции и требует изменения нашего подхода к истории Вселенной. Чтобы делать прогнозы в космологии, нам нужно рассчитать вероятности различных состояний Вселенной в настоящее время. В физике обычно выдвигают предположение о некотором начальном состоянии системы, а затем рассматривают ее развитие во времени, используя соответствующие математические уравнения. Учитывая данные о состоянии системы в какое-то время, можно пытаться вычислить вероятность того, что система будет в каком-то другом состоянии в более позднем времени. В космологии обычно предполагают, что у Вселенной одна определенная история. Используя законы физики, можно рассчитать, как эта история развивается во времени. В космологии такой подход называется «снизу вверх». Но поскольку мы должны принимать во внимание квантовую природу Вселенной, выражаемую фейнмановской суммой по историям, то амплитуда вероятности того, что Вселенная сейчас находится в определенном состоянии, получается суммированием вкладов от всех историй, которые удовлетворяют условию безграничности и приводят к рассматриваемому (исходному) состоянию. Иными словами, в космологии не нужно прослеживать историю Вселенной «снизу вверх», поскольку это предполагает существование единственной истории с четко определенными исходной точкой и развитием. Вместо этого нужно проследить истории «сверху вниз», перемещаясь назад от настоящего времени. Некоторые истории будут более вероятны, чем другие, а в их сумме, как правило, будет преобладать единственная история, которая начинается с возникновения Вселенной и заканчивается в рассматриваемом состоянии. Но возможны и другие истории, которые привели бы к тому, что в настоящее время у Вселенной могли бы иметься иные состояния. Из этого проистекает совершенно другой взгляд на космологию и на отношение между причиной и следствием. Истории, включенные в фейнмановскую сумму, не имеют независимого существования, они зависят от того, что измеряется. Скорее мы создаем историю Вселенной своим наблюдением, чем ее история создает нас.


Микроволновый фон. Эта карта неба создана в 2010 году по данным, собранным спутником WMAP за семь лет. Различными цветами показаны флуктуации температуры, имевшие место 13,7 миллиарда лет назад. Амплитуда температурных различий составляет менее одной тысячной градуса Цельсия, и все же они стали теми семенами, из которых выросли галактики. (Карта: NASA и научная группа проекта WMAP)

То, что Вселенная не имеет единственной независимой от наблюдателя истории, может показаться несовместимым с определенными известными нам фактами. Возможна какая-нибудь история Вселенной, в которой Луна сделана из сыра рокфор. Но по нашим наблюдениям Луна сделана не из сыра, и это плохая новость для мышей. Значит, истории, в которых Луна сделана из сыра, не имеют значения для нынешнего состояния нашей Вселенной, хотя они могут иметь значение для других вселенных. Все это похоже на научную фантастику, но это вовсе не фантастика.

Важное значение космологического подхода «сверху вниз» состоит в том, что очевидные законы природы зависят от истории Вселенной. Многие ученые полагают, что существует единая теория, объясняющая эти законы, а также и физические константы природы, такие как масса электрона или размерность пространства-времени. Но при подходе «сверху вниз» требуется, чтобы очевидные законы природы были различны для различных историй.

Рассмотрим наблюдаемую размерность Вселенной. Согласно М-теории, у пространства-времени имеется десять пространственных измерений и одно временное. Идея состоит в том, что семь пространственных измерений свернуты столь сильно, что мы не замечаем их и пребываем в иллюзии, что существует только три оставшихся большими измерения, с которыми мы знакомы. Один из главных нерешенных вопросов в М-теории — почему в нашей Вселенной нет других больших измерений и почему измерения свертываются?

Многие хотели бы полагать, что есть некий механизм, заставляющий все пространственные измерения, кроме трех, самопроизвольно свертываться. Иной вариант состоит в том, что все измерения могли быть с самого начала свернуты, но по какой-то причине три пространственных измерения развернулись, а остальные нет. Однако представляется, что нет динамической причины для того, чтобы Вселенная зародилась четырехмерной. Космология «сверху вниз» предсказывает, что число больших пространственных измерений никаким законом физики не устанавливается. Для каждого числа больших пространственных измерений — от нуля до десяти — будет своя квантовая амплитуда вероятности. Фейнмановская сумма учитывает их все, для каждой возможной истории Вселенной, но тот наблюдаемый факт, что у нашей Вселенной имеется три больших пространственных измерения, выделяет подкласс историй, имеющих такие свойства, которые можно наблюдать. Иными словами, квантовая вероятность того, что Вселенная имеет иные пространственные измерения, кроме трех больших, не важна, так как мы уже определили ее размерность и установили, что находимся во Вселенной с тремя большими пространственными измерениями. Поэтому, пока амплитуда вероятности для трех больших пространственных измерений не равна точно нулю, не важно, насколько она мала по сравнению с амплитудой вероятности другого числа измерений. Это все равно что спрашивать об амплитуде вероятности того, что нынешний Папа Римский китаец. Мы знаем, что он немец, хотя вероятность того, что он китаец, выше, поскольку китайцев больше, чем немцев[4]. Точно так же мы знаем, что у нашей Вселенной три больших пространственных измерения, и поэтому, даже если другое число больших пространственных измерений может иметь большую амплитуду вероятности, нас интересуют только те истории, которые связаны с тремя измерениями.

А как же свернутые измерения? Вспомним, что в М-теории точная форма оставшихся свернутых измерений — внутреннее пространство — определяет как значения физических величин вроде заряда электрона, так и природу взаимодействия между элементарными частицами, то есть природные силы (они называются фундаментальными взаимодействиями в природе). Все это было бы прекрасно, если бы М-теория позволяла измерениям свертываться только в одну форму или хотя бы в несколько, из которых все, кроме одной, можно было бы каким-то образом исключить и остаться только с одной формой, приемлемой для очевидных законов природы. Но существуют амплитуды вероятности для, возможно, 10500 различных внутренних пространств, и в каждом случае дело сводится к своим собственным законам и величинам для физических констант.

Если строить историю Вселенной «снизу вверх», то нет причины, по которой Вселенная должна прийти к такому внутреннему пространству для взаимодействия частиц, какое мы наблюдаем сегодня, — к Стандартной модели (взаимодействия элементарных частиц). Но если строить ее «сверху вниз», то мы считаем, что существует множество вселенных со всеми возможными внутренними пространствами. В некоторых вселенных электроны весят как мяч для гольфа, а сила гравитации сильнее магнетизма. К нашей Вселенной применима Стандартная модель со всеми ее параметрами. Можно рассчитать амплитуду вероятности для внутреннего пространства, приводящую к Стандартной модели на основе условия безграничности. Как и в случае с вероятностью существования вселенной с тремя большими пространственными измерениями, не важно, насколько мала эта амплитуда по сравнению с другими, ведь мы уже заметили, что Стандартная модель описывает нашу Вселенную.

Теорию, о которой мы рассказываем в этой главе, можно проверить. Ранее уже говорилось, что относительные амплитуды вероятности не имеют значения для радикально различающихся вселенных, например таких, у которых другое число больших пространственных измерений. Однако относительные амплитуды вероятности для соседних (то есть похожих) вселенных важны. Условие безграничности предполагает, что амплитуда вероятности наиболее велика для тех историй, в которых вселенная начинается абсолютно однородной. Для более неоднородных вселенных амплитуда уменьшается. Это означает, что ранняя вселенная была почти равномерной, но с небольшими неоднородностями. Мы уже отмечали, что эти неоднородности можно наблюдать как небольшие отклонения от фоновой величины микроволнового излучения, приходящего с различных направлений неба. Было обнаружено, что эти отклонения точно согласуются с общими требованиями инфляционной теории.

Однако нужны более точные измерения, чтобы полностью обособить теорию «сверху вниз» от других и либо подтвердить ее, либо от нее отказаться. Мы надеемся, что такие измерения в будущем смогут провести со спутников.

Сотни лет назад люди думали, что Земля уникальна и расположена в центре Вселенной. Сегодня мы знаем, что только в нашей Галактике сотни миллиардов звезд и у многих из них имеются планетные системы. Кроме нашей есть еще сотни миллиардов галактик. Выводы, описанные в этой главе, указывают, что сама наша Вселенная только одна из многих и что действующие в ней очевидные законы не являются определенными раз и навсегда. Это должно разочаровать тех, кто надеялся, что окончательная теория, теория всего, определит природу обычной физики. Мы не можем предсказать дискретные особенности, такие как число больших пространственных измерений или внутреннее пространство, которые определяют наблюдаемые нами физические величины, например массу и заряд электрона и других элементарных частиц. Мы скорее используем эти числа, чтобы выяснить, какие истории вошли в фейнмановскую сумму.

Похоже, мы находимся в критической точке в истории науки, и нам следует изменить наше понимание целей и того, что делает физическую теорию приемлемой. Кажется, что фундаментальные числа и даже форма очевидных законов природы не вызваны логикой или физическими принципами. Параметры могут принять разные значения, а законы — любую форму, которая приводит к внутренне непротиворечивой математической теории, и в иных вселенных они действительно принимают другие значения и другие формы. Это может противоречить нашему привычному стремлению казаться чем-то особенным или желанию открыть четкий набор всех законов физики, но природа, пожалуй, устроена именно таким образом.

Похоже, что существует великое разнообразие возможных типов вселенных. Как мы увидим в следующей главе, вселенных, в которых может быть жизнь, подобная нашей, очень мало. Мы живем в одной из тех, где жизнь возможна, но если бы наша Вселенная была хоть чуточку иной, то существа, подобные нам, не могли бы в ней жить.

Какой же вывод нужно сделать из «точной настройки» нашей Вселенной? Служит ли это доказательством того, что она была спроектирована благожелательным создателем? Или наука предлагает другое объяснение?

<<< Назад
Вперед >>>

Генерация: 4.605. Запросов К БД/Cache: 3 / 1
Вверх Вниз