Книга: Дневная звезда. Рассказ о нашем Солнце

Архитектура Солнца

<<< Назад
Вперед >>>

Архитектура Солнца

Если посмотреть на Солнце простым глазом, оно кажется ослепительно ярким идеальным желтым диском. На фотографиях Солнца, полученных в видимом свете, заметно, что на краю диска Солнце слегка темнее. Это явление называется потемнением к краю. Его можно объяснить следующим образом. Луч зрения проникает в центр видимого диска вертикально, проходя через газовую атмосферу Солнца. Когда мы смотрим на край, луч зрения проходит параллельно поверхности Солнца и пересекает только верхние слои раскаленного газа, несколько более холодные. Итак, свет, идущий от края Солнца, излучается более холодным газом и должен проходить через большую толщу атмосферы, чем свет, идущий из центра диска. В этом и заключается объяснение потемнения к краю. Но что это говорит нам о структуре Солнца? Основной вывод, который можно сделать, заключается в том, что газы нижней атмосферы горячее газов верхней атмосферы. Конечно, вы можете подумать, что не такое уж это большое открытие. Однако эта небольшая информация об архитектуре Солнца могла быть сделана всего лишь на основе простого наблюдения.

Между прочим, некоторые звезды показывают уярчение к краю (они горячее на краю). Это значит, что изменение температуры с высотой у них противоположно солнечному. Еще более усложняют картину радиокарты нашего Солнца: радиояркость на краю Солнца выше. Это означает, что какая-то часть радиоизлучения генерируется во внешней атмосфере.

Для рассмотрения структуры Солнца я опишу воображаемое путешествие через центр Солнца к Земле — хотя такое путешествие и совершают все время световые частицы-фотоны, перенося свет и тепло.

Отправляясь в путешествие, зададимся вопросом, как мы узнаем температуру и плотность. Величины большинства физических параметров не измеряются, а рассчитываются теоретически. Структура внутренней части Солнца определяется путем размышления и расчета. Вот этапы этого пути: теория, написание уравнений, мощные вычислительные машины. И конечно, нужна еще удача. Известны обычно только некоторые глобальные характеристики, такие, как масса или радиус, а также физические условия на излучающей поверхности. В результате наблюдений других звезд мы знаем также взаимную зависимость некоторых параметров (например, поверхностной температуры и массы). Химический состав Солнца может быть определен, как мы увидим дальше, из спектроскопических данных. Теоретик должен на основании всех этих данных создать математическую модель Солнца. Если эта модель соответствует всем известным наблюдательным свойствам и продолжает соответствовать новым результатам, то можно считать ее довольно хорошим приближением к действительности. Такой метод используется в солнечной физике почти полстолетия. Сейчас мы имеем уже разумное глобальное представление о структуре Солнца. Мы не можем теперь произвольно менять некоторые солнечные параметры, такие, например, как температура ядра, не оказывая существенного влияния на величину наблюдаемой яркости Солнца. Итак, начнем наше воображаемое путешествие из глубины Солнца, из области, которая пока может быть исследована только при помощи математики и вычислительной техники.


Рис. Основные зоны внутри Солнца.

Центральная часть Солнца для краткости называется ядром. Внутри ядра вещество чрезвычайно сжато. Солнце находится в устойчивом состоянии под действием сил гравитации со стороны своего собственного вещества, и солнечное ядро сжато весом вышележащей материи. Хотя радиус ядра равен примерно одной четверти радиуса Солнца, а объем ядра поэтому составляет менее 2% полного объема Солнца, почти половина солнечной массы упакована в нем. Слово «упаковано» хорошо соответствует действительности — ведь плотность внутри ядра равна 155 г/см3, она в 10 раз больше, чем плотность свинца. Внутреннее давление огромно, ~3?1011 атмосфер, а температура составляет 14—15 млн. градусов по Кельвину.

Условия точно такие, какие нужны для работы ядерного реактора. Ядро и представляет собой управляемую ядерную станцию, где водород превращается в гелий. Энергия, освобождаемая в результате ядерных процессов, пересекает ядро в виде излучения.

Передвинувшись на 1/4 радиуса Солнца, мы покидаем ядро и вступаем в конвективную зону, которая простирается вплоть до видимой поверхности Солнца. В этой зоне сосредоточена остальная половина массы Солнца. Здесь не происходит образования энергии, так как температура и давление вещества падают ниже значений, необходимых для работы ядерного реактора. Чем ближе мы к поверхности, тем меньше температура и давление. Другими словами, мы движемся вдоль направления градиента температуры и плотности. На расстоянии в 0,1 солнечного радиуса под поверхностью Солнца температура приблизительно равна 600 000 К, а давление составляет всего 1 млн. атмосфер. Внутри конвективной зоны имеют место крупномасштабные движения вещества, в результате которых энергия переносится от ядра к поверхности.

На видимой поверхности Солнца, которую астрономы называют фотосферой, взгляд может проникнуть на довольно большое расстояние. Внутри Солнце совершенно непрозрачно (в противном случае мы могли бы видеть сквозь него). Поэтому наш воображаемый путешественник в центре Солнца может видеть всего лишь на расстоянии в 1 см от него в любую сторону. Фотосфера представляет собой переходный слой, в котором вещество охлаждается настолько, что становится прозрачным. Свет может покидать эту поверхность без особенных помех, и поэтому мы эту поверхность видим. Другой важный факт, который нужно отметить, состоит в том, что желтый диск Солнца имеет очень резкий край, а ведь от шара светящегося газа мы могли бы ожидать неясных очертаний. Резкость края связана с очень быстрым внезапным переходом от почти полной непрозрачности к высокой прозрачности. Видимый нами белый свет Солнца приходит главным образом от слоя, в котором имеет место такое резкое изменение параметров. Толщина этого слоя около 500 км— меньше 0,1 % радиуса Солнца, поэтому край Солнца так резок. Сейчас нам становится понятнее явление потемнения к краю: ведь луч зрения, идущий к центру диска, проходит на 500 км глубже, и поэтому достигает более горячих и ярких слоев, чем луч зрения, направленный к краю диска.

На поверхности Солнца температура падает до примерно 6000 К, давление до 1/6 атмосферы, а плотность совсем до малой величины — она становится меньше, чем одна миллионная доля плотности обычной воды.

Двинемся дальше сквозь слои внешней атмосферы Солнца, напоминающие луковичную шелуху. Над желто-белой фотосферой лежит относительно холодная область, называемая хромосферой. Она видна в течение нескольких секунд во время солнечного затмения как розовое кольцо вокруг диска Солнца. Между фотосферой и хромосферой нет определенной четкой границы. Если температура снизилась до примерно 4500 °К, то можно считать, что это уже хромосфера. Затем температура поднимается с высотой, достигая 10 000°К в верхней хромосфере, а дальше резко возрастает до 1 млн. градусов на границе с короной, на высоте в несколько тысяч километров над фотосферой. Между тем плотность падает до 10-16 г/см3 (в 1 см3 содержится при этом 10 млн. атомов водорода).

Самый верхний слой атмосферы Солнца — корона, протягивающаяся по крайней мере на 10 солнечных радиусов. Внутри короны всюду температура составляет 106 К и выше. Вещество короны в видимом свете почти полностью прозрачно, и поэтому свет самой короны очень слаб. Из-за этого корону можно увидеть только во время полных солнечных затмений.

Корона является мощным источником рентгеновского излучения. При температуре около 106 К только тяжелые атомы, такие, как атомы железа, способны еще удерживать на орбитах часть своих электронов (да и то не больше одного или двух). Такие «ободранные» тяжелые атомы дают эмиссионные линии в рентгеновской области спектра. Атомы, способные снова захватить электроны на орбиту, также излучают рентген. Рентгеновское излучение возникает и при взаимодействии таких атомов друг с другом.

Выше короны наши воображаемые путешественники попадают в область солнечного ветра. Этот ветер образуется короной. И действительно, самая верхушка короны, удаленная на миллионы километров от поверхности Солнца, улетает в космическое пространство. Силы солнечной гравитации не хватает, чтобы удержать частицы на таком расстоянии.

Поэтому они испаряются в пространство и образуют ветер, состоящий из частиц. Начальная скорость ветра около 4000 км/с. Постепенно его скорость падает и позади нашей планеты равна 400 км/с. Не бойтесь, ветер, имеющий такую высокую скорость, не страшен, так как плотность его мала: в объеме чайной чашки будут находиться всего около 1000 частиц. В течение года Солнце из-за солнечного ветра теряет 200 миллионов миллионов тонн (200?1018 г), или З?106 тонн в 1 сек. Величина несколько меняется в зависимости от состояния активности Солнца.

Открытие солнечного ветра было сделано раньше, чем начали летать ИСЗ типа IMP. Самое удивительное, что обнаружение солнечного ветра явилось результатом астрономических наблюдений чрезвычайно удаленных радиоисточников, расположенных на расстоянии миллиардов световых лет от солнечной системы. Эти источники были названы квазарами. В 1964 г. кембриджские радиоастрономы обнаружили, что, когда Солнце приближается к лучу зрения, направленному к далекому радиоисточнику, возникает возмущение радиосигнала. Это явление, названное межпланетными сцинтилляциями, имеет примерно такую же физическую природу, как и мерцание звезд на ночном небе. Нерегулярности солнечного ветра — сгущения и разрежения на пути распространения радиоволн приводят к возмущениям их траектории и вызывают эффект «мерцания».

Открытие солнечного ветра привело к еще одному непредвиденному результату. Кембриджские исследователи построили специальный телескоп для исследования солнечного ветра и его влияния на излучение радиоисточников. Через несколько месяцев работы при помощи этого прибора были открыты пульсары. Пульсары представляют собой быстро вращающиеся нейтронные звезды, «шары» ядерного вещества диаметром 10 км и массой, близкой массе Солнца. В течение десятилетий теоретики предсказывали их существование, но никто не знал, как их найти в холодных просторах безграничной Вселенной. Совсем случайно Солнце способствовало их открытию!

Планеты, движущиеся вокруг Солнца по своим эллиптическим орбитам, пересекают внешние слои атмосферы Солнца. Две планеты с сильными магнитными полями, а именно Земля и Юпитер, отклоняют прямой «натиск» потоков солнечного ветра благодаря своей магнитной полости, называемой магнитосферой. Наши воображаемые путешественники должны заметить изменения в магнитном поле вблизи Земли. Фронт ударной волны в солнечном ветре располагается непосредственно перед магнитным «буфером». Отметим, что путешествие от Солнца на этом участке пути уже нельзя считать только плодом воображения, так как люди на самом деле пересекли эту область на своем пути к Луне. Кроме того, магнитное окружение Земли исследовалось при помощи многих ИСЗ.

Вблизи орбиты Сатурна на расстоянии от Солнца в 1 миллиард км атмосфера Солнца уже неотличима от межпланетной среды, заполненной блуждающими сгущениями газа и пылинками. Кстати, межпланетная пыль является причиной прекрасного явления, связанного с Солнцем, а именно зодиакального света. Это явление называется также фальшивым восходом и выглядит как конус света на горизонте, видимый на западе вскоре после захода Солнца или на востоке перед самым восходом Солнца. Зодиакальный свет вызван рассеянием солнечного излучения на пылевых частицах межпланетного пространства. В темные безлунные ночи около 1/3 полного света неба приходится на его долю. Я никогда не видел его по-настоящему в Англии, но в Австралии это явление произвело на меня большое впечатление. Зодиакальный свет часто хорошо виден в малоосвещенных местах американских южных штатов.

Покидая нашу солнечную систему, отметим, что Солнце похоже на многие другие звезды. Солнце является одной из многих звезд типа G2. Но, как показало наше воображаемое путешествие, Солнце — единственная звезда, которую мы способны разложить, говоря образно, по полочкам. Хотя мы и имеем представление о внутренних областях звезд, мы не можем достаточно подробно рассмотреть их поверхности, исследовать их короны, обнаруживать слабые звездные ветры и прослеживать день ото дня изменения их атмосфер. Конечно, в обрисованной нами картине много неясностей. Но ведь о других более далеких от нас звездах наши представления еще более неопределенны.

<<< Назад
Вперед >>>

Генерация: 0.512. Запросов К БД/Cache: 0 / 0
Вверх Вниз