Книга: Дневная звезда. Рассказ о нашем Солнце

Эволюция нашего Солнца

<<< Назад
Вперед >>>

Эволюция нашего Солнца

Если бы Солнце было единственной звездой на небе, мы вряд ли смогли бы много узнать о его рождении, жизни и будущей смерти. Только наблюдения за многими звездами позволяют астрономам выяснить в общих чертах историю жизни звезд вообще и Солнца в частности. Вот так и в лесу: ни один ботаник не может сидеть и наблюдать, как дерево возникает из семени, как оно превращается в молодое деревце, потом в большое густое дерево и наконец умирает. Это невозможно хотя бы потому, что дерево живет дольше, чем сам ботаник! Однако наблюдения за деревьями различных возрастов и пород дают достаточный материал для выяснения жизненного цикла деревьев.

То же самое и со звездами: астрофизики за последние 50 лет научились различать молодые звезды, многочисленные звезды среднего возраста (к ним принадлежит и Солнце) и звезды в конечной стадии их эволюции. В этой главе мы дадим краткое описание прошлой и будущей истории нашего Солнца.

Начнем с установления возрастов Солнца, нашей Галактики и Вселенной для того, чтобы зафиксировать временную шкалу истории. Возраст Солнечной системы определяется по возрасту самых древних веществ, которые оказываются в нашем распоряжении. На поверхности Земли нет такого первичного вещества. Дрейф континентов, погода, океаны и ледниковые периоды настолько трансформировали поверхностные горные породы, что они уже не содержат какой-либо информации о возрасте планеты. Важнее, однако, то, что Земля оставалась неразделенной на твердую земную кору, мантию и жидкое ядро в течение многих сотен миллионов лет после своего образования. Поэтому информацию о происхождении Солнечной системы нужно искать где-нибудь в другом месте, например в метеоритах и на Луне.

Специалисты по планетам пришли к выводу, что метеориты являются осколками горных пород, сохранившимися со времен ранней истории Солнечной системы. Очевидно, они образовались почти сразу после Солнца. При этом в состав некоторых метеоритов вошло небольшое количество радиоактивных элементов. В течение всей последующей истории эти радиоактивные вещества распадались, некоторые быстро, другие чрезвычайно медленно, в результате количества первичных радиоактивных веществ уменьшилось, но образовались продукты их распада. Метеорит — это космические часы с постепенно раскручивающимся заводом. Выбрав определенный радиоактивный элемент и тщательно измерив отношение количества изотопов, которым предстоит все еще распасться, к количеству продуктов распада, можно определить возраст метеорита. Правда, существуют некоторые осложнения. Например, свинец является продуктом распада урана и тория, но изотопы свинца всегда присутствуют там, где есть эти элементы, поэтому продукты распада урана и тория всегда загрязнены посторонним свинцом. За исключением распада урана и тория, другие процессы радиоактивного распада, а именно превращение калия в аргон, рубидия в стронций и недавно открытый процесс превращения самария в неодим, позволяют получить достаточно надежные сведения о возрасте метеоритов. Согласно недавно возникшей науке космохронологии, все метеориты образовались около 4,57 млрд. лет тому назад в течение интервала, равного 30—100 млн. лет. Это несомненно является сильным аргументом в пользу того, что Солнце и Солнечная система образовались около 4,6 млрд. лет тому назад.

Радиоактивные часы позволили определить возраст лунных пород. Стремление прочесть показания лунных часов было одной из основных причин, по которым образцы лунных пород были доставлены на Землю. Возраст Луны, определенный по этим образцам, оценивается в 4,5—4,6 млрд. лет. Между прочим, наиболее древние образцы горных пород на Земле в Западной Гренландии имеют возраст около 3,6 млрд. лет, а относительное содержание свинца в них соответствует возрасту Земли в 4,45 млрд. лет.

Поэтому можно считать, что Солнечная система образовалась примерно 4,5—4,6 млрд. лет тому назад. С гораздо меньшей точностью оценивается возраст нашей Галактики и Вселенной. В настоящее время полагают, что возраст Галактики составляет 10—12 млрд. лет, а возраст Вселенной — 13 млрд. лет или даже больше. Во всяком случае, можно с уверенностью считать, что Галактика конденсировалась по крайней мере через несколько сот миллионов лет после образования Вселенной, а образование Солнца произошло, когда Галактике уже было по крайней мере 5 млрд. лет.

В последние годы было высказано много предположений относительно процесса образования звезд и, следовательно, Солнца. Местом рождения звезд является газ межзвездного пространства. Образование новой звезды представляется долгим и медленным, если судить человеческими масштабами времени. Почти все звезды, видимые невооруженным глазом, были на небе еще до появления на Земле человека. И все же мы знаем, что новые звезды должны возникать внутри газовых облаков. Известно, что молодые массивные звезды, живущие всего несколько десятков миллионов лет, обычно образуются вблизи облаков водорода, гелия и других элементов. Кроме того, новые звезды наблюдаются в туманности Ориона, одной из ближайшей к нам областей звездообразования. Наконец, химический состав межзвездного газа подобен химическому составу Солнца и звезд: примерно 3/4 водорода на 1/4 гелия с небольшой (~2%) добавкой более тяжелых элементов.

«Образ» жизни газового облака зависит от баланса гравитационных сил и сил давления, возникающих вследствие нагрева и сжатия. Мы встречались уже с одним из вариантов этой вечной космической битвы при обсуждении устойчивости Солнца. Гравитационные силы стремятся сжать воедино все части облака, которые из-за тепловой энергии стремятся рассеяться в космическом пространстве. Около пятидесяти лет назад кембриджский теоретик сэр Джеймс Джинс показал, при каких условиях облако газа может сжаться, образуя компактное небесное тело. Возможность сжатия, а следовательно, рождения звезды зависит от температуры и массы газа: холодные облака сжимаются при меньшей массе, нежели горячие. Тем не менее даже при температуре в 10° выше абсолютного нуля (10 К) масса довольно плотного газопылевого облака должна быть не меньше 10 масс Солнца. Более теплые облака, чтобы сжаться, должны быть еще массивнее. Теория Джинса объясняет также, почему звезды обычно рождаются семействами, называемыми звездными скоплениями. Полная масса звездного вещества типичного молодого скопления равна нескольким тысячам солнечных масс; из этой массы образуются около 200 звезд. Джинс показал, что межзвездному газу легче образовать 200 звезд, чем, скажем, двадцать.

Как видите, не так легко образовать звезды из межзвездного газа. Если бы это было просто, то тогда уже давно (до образования Солнца!) весь газ превратился бы в звезды. Облаку, в котором зародилось наше Солнце, пришлось преодолеть немало препятствий, так как вначале оно было слишком горячим, вращалось слишком быстро, обладало слишком большим магнитным полем, чтобы образовать звезды. При сжатии облако нагревается. Вы, наверно, замечали, что насос, накачивающий камеру, нагревает воздух. Сжимающееся межзвездное облако должно было избавиться от тепла, чтобы сжатие могло продолжаться. Интересно то, что сама Галактика оказала помощь облаку в этом процессе.


Рис. Туманность «Лагуна» (Мессье 8) —это гигантское скопление космического газа и пыли. Темные сгустки вещества на краю туманности типичны для областей, в которых происходит рождение звезд. Гравитационное притяжение объединяет эти сгустки в единое целое. По мере сжатия эти сгустки распадаются на мелкие фрагменты; часть из них, сжимаясь, достигает плотности, достаточной для «поджигания» ядерных реакций в их центральных частях. Таким образом, перед нами семейство молодых звезд, образовавшихся из межзвездной среды. (Обсерватория Китт-Пик, США.)

Наша Галактика имеет два спиральных рукава, и там, где находится Солнце, газ и звезды делают полный оборот примерно за 250 млн. лет. Периодически (скажем, каждые 125 млн. лет) определенное облако проходит через вращающийся рукав Галактики. При столкновении с более плотной частью рукава облако испытывает удар и сильно сжимается. Этот процесс вызывает дальнейшее резкое сжатие. Оптические и радионаблюдения ближайших галактик отчетливо показывают, что образование звезд эффективнее происходит вдоль границ спиральных рукавов, где скапливается вещество. Таким образом, около 5 млрд. лет тому назад облако, из которого затем родилось Солнце, испытало сильный удар при пересечении со спиральным рукавом. При этом пыль внутри облака нагрелась, облако стало излучать энергию в инфракрасной области спектра, унося тем самым часть гравитационной потенциальной энергии. Обычно области образования звезд содержат много пыли и хорошо видны на небе в инфракрасном диапазоне. Избыток энергии облака может также теряться в виде радиоизлучения молекул. По подсчетам радиоастрономов, некоторые молекулы, в частности молекулы воды, могут очень эффективно уносить энергию плотных облаков, излучая в микроволновом диапазоне. По существу, пары воды действуют как мощный мазер. Таким образом, энергия сжимающегося облака уходит в виде излучения в инфракрасной и микроволновой областях электромагнитного спектра.

Я уже сказал выше, что, согласно критерию Джинса, масса облака, из которого появилось Солнце, могла быть равной нескольким тысячам солнечных масс. При конденсации оно разбилось на небольшие облака из-за возникших в отдельных частях облака неустойчивостей. Эти облачка в свою очередь разбиваются на еще более мелкие фрагменты в процессе сжатия всего облака. В конце концов остаются темные протозвезды и прото-Солнце, продолжающиеся сжиматься, однако уже близкие к своей окончательной форме. Весь этот процесс длился для Солнца около 400 000 лет.

Что происходило дальше, не совсем ясно. Прото-Солнце на этой стадии не было достаточно горячим, чтобы начались ядерные реакции. Осталась также проблема вращения, так как из-за сжатия прото-Солнце стало очень быстро вращаться (подобно тому как ребенок, сидящий на вращающемся кресле с вытянутыми руками, начинает вращаться быстрее, когда он сложит руки). Возможно, некоторое замедление вращения произошло в результате перепутывания магнитного поля прото-Солнца с магнитным полем Галактики. Магнитные силовые линии немного напоминают резину: чем сильнее вы ее растягиваете, тем большее сопротивление она оказывает. При вращении прото-Солнца образуется закрученное локальное магнитное поле, и оно в свою очередь начинает тормозить вращение. Более того, совместное действие вращения и магнитного поля должно было помочь процессу образования диска, когда размер облака приближался к размеру Солнца.

Конечная стадия процесса рождения Солнца продолжалась около 100000 лет. Внутри прото-Солнца образовалось ядро, сжимающееся под действием силы гравитации, причем температура и давление в нем все время росли. «Включилась» первая ядерная реакция: ядро лития-7 соединилось с протоном, что привело к образованию двух ядер гелия. Такая реакция происходит при температуре около 1 млн.градусов. Этот процесс вскоре истощился. Литий послужил топливом лишь для разжигания ядерного очага. С возникновением ядерных реакций изолированные фрагменты газа наконец-то превратились в молодое Солнце, однако прошло еще какое-то время, прежде чем все окончательно установилось. В первые несколько миллионов лет число ядерных реакций непрерывно росло. Эта фаза закончилась через 50 млн. лет. По-видимому, во время этой фазы существовал огромной мощности ветер, намного более сильный, чем теперешний солнечный ветер, поскольку он сдул прозрачную оболочку родительского облака.

В то время как формировался ядерный очаг, осколки и обломки вещества, оставшиеся за пределами основного сжимающегося облака, уже близкого по размеру к будущему Солнцу, начали объединяться, образуя метеорные тела и протопланеты. По показаниям метеорных часов мы знаем, что конденсация или затвердение продолжались 30—100 млн. лет. Уплощенный планетарный диск при помощи магнитного поля оказался связанным с Солнцем, и эта связь привела к небольшому замедлению солнечного вращения. Однако основной причиной замедления вращения Солнца (сейчас оно совершает один оборот примерно за месяц) явился унос углового момента или энергии вращения сильным ветром из частиц.

Образование планет, должно быть, длилось несколько сот миллионов лет. На последних стадиях малые обломки и агрегаты сталкивались на огромной скорости с большими. На фотографиях Меркурия и Луны можно видеть древние ландшафты со следами такой страшной космической бомбардировки. Куски горных пород — метеорные тела — блуждают в межпланетном пространстве, если можно назвать блужданием движение со скоростями 30—100 км/с.


 Рис. Диаграмма Герцшпрунга — Рассела, по которой можно проследить жизненный цикл звезд. Эту диаграмму можно представить в разных формах; здесь она построена в координатах; температуры звезд — их светимость. В течение большей части своей жизни Солнце будет находиться на главной последовательности, а затем скорее всего станет красным гигантом и закончит свою жизнь белым карликом.

 Когда вы видите падающую звезду, вы присутствуете при длящейся всего одну секунду смерти камня, более древнего, чем что-либо на поверхности Земли. Этот камень отправился в путешествие по Солнечной системе 5 млрд. лет тому назад. Иногда куски таких метеорных тел падают на поверхность Земли; такие фрагменты называются метеоритами.

Я уже рассказывал об источнике солнечной энергии, действующем большую часть его жизни. Солнце сейчас на середине своего жизненного пути, поскольку уже использована половина его водородных запасов. Поэтому Солнцу остается жить еще 5 млрд. лет. Если мы сопоставим первую половину жизни Солнца нашему календарному году, то можно сказать, что человечество появилось примерно в 22 часа 31 декабря, цивилизация началась за десять минут до полуночи, а телескоп изобрели в последнюю секунду. Лично я сомневаюсь, чтобы наши потомки очень беспокоились из-за того, что Солнце прекратит свое существование. Только из непомерного тщеславия можно полагать, что человечество является бессмертной вершиной эволюционной цепи. Мы всего лишь достигли большей вершины, чем кто-либо раньше до сих пор, и то с точки зрения земных представлений.

Но во всяком случае, что же будет происходить в последующие 5 млрд. лет? Для ответа на этот вопрос воспользуемся диаграммой Герцшпрунга — Рессела [Г—Р], по горизонтальной оси которой отложена температура звезды, а по вертикальной — ее светимость. Диаграмма Герцшпрунга — Рессела особенно полезна для предсказания тех быстрых изменений, которые произойдут с Солнцем, когда запасы энергии начнут уменьшаться.

В настоящее время Солнце расположено на главной последовательности, то есть в той группе, где находятся все нормальные звезды водородного цикла. Звезды, расположенные левее и выше положения Солнца на диаграмме, имеют большую массу, чем Солнце; те, что ниже,— меньшую массу. Важно понять, что ни Солнце, ни какая-либо другая звезда не движутся вверх или вниз вдоль по последовательности. Они остаются почти на том же самом месте, пока неослабно потребляют водород, немного смещаясь направо и вверх от главной последовательности по мере того, как его заменяет гелий. При этом светимость может возрасти на одну четверть, хотя поверхностная температура немного уменьшается. Короче говоря, Солнце будет становиться немного больше, немного краснее и будет значительно сильнее светить. Эта фаза эволюции, несомненно, чрезвычайно важна для любой жизни на поверхности Земли через несколько миллиардов лет. Причина, по которой Солнце будет греть сильнее, очень интересна. При сжигании водорода и превращении его в гелий расходуются электроны: 2 электрона на одно ядро гелия. Поэтому со временем запас электронов истощится, и энергии из ядра Солнца будет легче выходить наружу, так как именно электроны несут основную ответственность за задержку фотонов. Они являются главной причиной непрозрачности Солнца.

Когда ядерный солнечный реактор в конце концов выгорит, ядро Солнца начнет сжиматься. Физическая причина снова очень проста. Как только приток энергии уменьшается, ядро охлаждается, и чтобы противодействовать этому процессу, оно сжимается, высвобождая взамен тепловой потенциальную энергию своего собственного гравитационного поля. Сжатие ядра приводит к тому, что несгоревший водород извне ядра падает ближе к центру Солнца. Таким образом, появится новый источник энергии: водород, падающий вниз к центру Солнца, сжимается и нагревается до такой степени, что начинается сгорание водорода в тонком слое, окружающем ядро. На протяжении этого процесса образующийся гелий сбрасывается в ядро с внутренней стороны этого слоя, в то время как на внешней стороне продолжается сгорание новых порций водорода.

Воображаемые астрономы других планетных систем наблюдали бы через 5 млрд. лет на Солнце драматические изменения. При сжатии ядра внешние слои сильно расширятся, в результате чего Солнце станет огромным красным шаром с диаметром, в 10 раз большим диаметра сегодняшнего Солнца. Такая звезда — красный гигант на диаграмме Г—Р, поток энергии от нее в тысячи раз больше нормального. Ее излучение принесет на планеты иссушающий зной. Здесь играют роль некоторые тонкие физические эффекты. Коллапсирующее (сжимающееся) ядро сохраняет почти неизменную температуру. Для этого оно должно избавиться от части своей внутренней энергии, которая передается внешним слоям или оболочке, приводя к ее резкому расширению. Парадоксальное золотое правило звездной эволюции состоит в том, что сжатие внутренних слоев приводит к расширению внешних. Другой эффект состоит в том, что более холодное и более красное Солнце будет посылать на планеты больше тепла. Это объясняется увеличением поверхности звезды и, следовательно, ее видимого размера, по крайней мере раз в сто. Такое увеличение с избытком компенсирует уменьшение светимости на единицу площади. Что же произойдет с Землей? Океаны и реки закипят, ледяные шапки растают, атмосфера улетит в космическое пространство. Бесплодная скалистая поверхность нашей планеты будет обдуваться яростным солнечным ветром, дующим снова с огромной скоростью. Каждый год Солнце — красный гигант — будет терять одну миллионную (10-6 своей массы. Во внешних частях Солнечной системы гигантские планеты Юпитер и Сатурн будут освобождены от глубокого льда, покрывавшего их поверхности в течение 10 млрд. лет. Ледяной покров, состоящий из метана, аммония и водорода, толщиной в десятки тысяч км испарится. Возможно, обнажатся их скальные ядра. А во внутренней части Солнечной системы Меркурий будет вращаться почти внутри Солнца.

Будут иметь место и другие эффекты: Солнце будет видно так далеко в Галактике, как никогда раньше. На астрономическом языке это означает, что его видимая звездная величина увеличится на 6m. Подобно тому как в настоящее время красный гигант Бетельгейзе (? Ориона) является одной из самых ярких звезд нашего неба, так Солнце будет господствовать на чужом небе неизвестных планет далеко в космическом пространстве на расстояниях в тысячи световых лет.

В масштабах астрономического времени это расширение можно назвать непродолжительным. Подобно большинству внезапно развивающихся природных явлений, рассмотренный процесс зайдет слишком далеко. Высокая светимость приведет к невосполняемому расходу теперь уже ограниченного резерва топлива. В оболочке водород будет сгорать все быстрее, сброс продукта горения — ядер гелия — в солнечное ядро будет продолжаться, и когда в центре Солнца накопится достаточное количество гелиевой золы, ее температура начнет расти. Когда температура достигнет 100 млн. градусов, начнется процесс слияния трех ядер гелия (?-частиц), в результате которого образуются ядра атомов углерода. Ядерная топка выйдет из-под контроля, так как температура будет продолжать расти по мере ускорения ядерных реакций, а рост температуры только ускорит темпы сгорания гелия. Условия будут совсем отличными от условий в звездах главной последовательности, когда дополнительный нагрев, приводящий к увеличению давления, компенсируется небольшим расширением — важным стабилизирующим фактором. Нет, конечная стадия солнечной эволюции совсем не мирная, так как давление в ядре будет нечувствительно к температуре. Стадия, на которой возникает гелиевая вспышка, приводящая к образованию углерода (и азота) в ядре, является вершиной эволюции красного гиганта. Конечная вспышка отодвинет, по всей вероятности, внешнюю границу Солнца до положения теперешней орбиты Земли.

Вопреки общераспространенному мнению наше Солнце не станет ни новой, ни сверхновой звездой. Так, вспышка гелия не вызовет внезапного уярчения или нечто похожего на взрыв звезды. Ведь ядро, в котором все это происходит, экранировано протяженной оболочкой.

Дальнейшее поведение Солнца не может быть предсказано с большой определенностью. В конце своего существования как красного гиганта оно может стать неустойчивым. Если на границе ядра создается тонкий слой, где сгорает гелий, могут происходить частые вспышки. Солнце будет в этом случае сокращаться в размерах и становиться горячее, пока давление излучения умирающего ядра не станет достаточно сильным, чтобы рассеять атмосферную оболочку в космическое пространство со скоростью в несколько десятков километров в секунду. Мы не знаем, потеряет ли Солнце свою оболочку сразу целиком или в результате ряда выбросов. Но что известно вполне определенно, это то, что звезды с массой, близкой массе Солнца, образуют планетарную туманность, в которой кольцо светящегося водорода и гелия окружает крошечную очень горячую звезду с температурой поверхности около 100 000 градусов. Эта центральная звезда фактически представляет собой звездное ядро, горячую, но уже мертвую ядерную станцию звезды.

Конечная судьба солнц удивительно проста. Оболочка туманности постепенно расплывается в межзвездном пространстве, где в конечном итоге объединяется с газовыми туманностями, в которых в далеком будущем могут возникнуть новые поколения звезд и планет. Тем временем горячее ядро, излучая в пространство, постепенно охлаждается. Все это время на диаграмме Г—Р оно передвигается вниз, оказываясь слева от главной последовательности. Оно превратится в белого карлика. Значительная часть массы Солнца будет утрамбована в шар размером в Землю. Белый карлик не сжимается, несмотря на то что его внутреннее гравитационное поле очень сильно. Электроны, эти маленькие заряженные частицы, образующие внешние облака вокруг атомов, сжаты так сильно, что их давление может противостоять гравитации. Это электронное давление возникает не из-за отталкивания электронов, как вы можете предположить. Это особая сила, похожей на которую нет в нашем обычном мире. Эта сила имеет квантовую природу и проявляется только в микромире элементарных частиц. Она возникает вследствие того, что все электроны внутри звезды должны обладать различными по величине энергиями.

При дальнейшем остывании белый карлик медленно гаснет. В конце концов он остынет настолько, что не будет ничего излучать в видимом свете. Он превратится в черного карлика, почти необнаружимую груду ядерных отходов, состоящих в основном из гелия, углерода, азота и кислорода. Все вещество, в нем содержащееся, на этой стадии достигло конца космической дороги, если иметь в виду предсказуемое будущее Вселенной. Через шесть миллиардов лет Солнце и Земля безусловно будут мертвы.

Исследование эволюции звезд, более горячих чем Солнце, окружным путем приводит нас снова, как мы увидим, к проблеме зарождения Солнечной системы. Не место в книге о Солнце вдаваться во второстепенные детали эволюции звезд, поэтому мы подчеркнем только основные моменты. У звезд с большей массой и, следовательно, более горячих, чем Солнце, процесс превращения водорода в гелий идет другим путем, через углеродно-азотный цикл. Эта реакция состоит из шести стадий, и в ней ядра углерода и азота используются лишь как вспомогательные звенья для образования гелия из самых легких элементов. Сами углерод и азот не расходуются. Внутри Солнца температура недостаточно высока, чтобы углеродно-азотный цикл мог эффективно осуществляться, но он работает внутри более горячих звезд, центральная температура которых превышает 16 млн. градусов. Вклад этого цикла в энергию, выделяющуюся внутри Солнца, составляет всего около 2%.

Одной из наиболее важных характеристик звезд с большей, чем у Солнца, массой является меньшая продолжительность жизни. Это может показаться немного странным: ведь у более крупных звезд больше топлива и поэтому они должны вроде бы жить дольше. Верно, у них больше топливных запасов, но они расходуют их гораздо быстрее. Так, звезда с массой в 5 раз большей солнечной имеет в 5 раз больше водорода для ядерного реактора. Однако большая масса приводит к большему сжатию и, следовательно, к более высоким значениям температуры и давления в центре звезды. В результате скорость ядерных реакций увеличивается примерно в тысячу раз. В итоге смерть звезд наступает в двести раз быстрее, примерно через 50 млн. лет. Теперь задумайтесь над следующим вопросом. Человек появился только через 5 млрд. лет после образования прото-Солнца. Могла ли разумная жизнь развиться на планетах, вращающихся вокруг звезд большой массы? Вряд ли, ведь время жизни этих звезд слишком мало.

И все же самое удивительное, что именно эти расточительные звезды сделали возможным зарождение жизни. Когда звезда типа Солнца умирает, она сбрасывает газовую оболочку в космическое пространство и сжимается в шар, содержащий легкие элементы: гелий, углерод, азот. Но когда умирает массивная звезда, она делает это гораздо эффектнее. Объект в 10 раз массивнее Солнца просто не может погаснуть тихо. При истощении запасов топлива, ядро такой звезды очень быстро сжимается, возможно в течение секунды, превращаясь или в небольшой нейтронный шар диаметром 10 км, или, может быть, даже в черную дыру. В результате такого направленного внутрь взрыва, или имплозии, возникает ударная волна, пересекающая внешнюю оболочку в то время, когда она начинает обрушиваться на ядро. Ударная волна сжимает газ, и в течение следующей секунды его температура возрастает до значения, достаточного для ядерного взрыва. Решающий момент во всем этом процессе — внезапная смерть ядра в результате эффекта гравитации, которому уже не может противостоять давление. Это лишает оболочку звезды возможности спокойно перестроиться. Умирающей массивной звезде ничего не остается, как превратиться в сверхновую звезду.

Взрыв звезды большой массы создает благоприятные условия для образования тяжелых элементов. В горячей богатой гелием оболочке звезды образуются изотопы таких элементов, как неон, магний, кремний, сера и других, еще более тяжелых, вплоть до железа (такие процессы происходят также и в центре массивных звезд). Элементы тяжелее железа образуются путем захвата ядер гелия и, что еще важнее, свободных нейтронов.

Взрыв сверхновой выбрасывает газ в космическое пространство. Этот газ обогащен тяжелыми элементами, образованными либо в ядерном очаге, либо во взрывающейся оболочке. Это вещество уносится в пространство со скоростями, превышающими 10 млн. км/час. За миллионы лет скорость их уменьшается, и они незаметно сливаются с веществом газовой туманности межзвездного пространства. Теперь сцена готова для нового действия — для образования нового поколения звезд, обогащенного «золой» своих предков. Таким образом, все вещество Земли и наших тел создано в конечном счете из водорода и гелия во время ядерных взрывов, имевших место задолго до рождения Солнца. Ведь первое поколение звезд, образовавшихся на ранней стадии эволюции нашей Галактики, не могло бы иметь планет. Планеты могут возникать лишь у звезд, которые, подобно Солнцу, содержат некоторую долю вещества, уже участвовавшего в одном из циклов.

Наша дневная звезда служит астрономам-теоретикам легко доступным испытательным стендом для проверки их моделей. Действительно, в самой основе моделей звездных структур лежат солнечные модели. Поэтому вполне понятно, что, когда подвергают сомнению правильность моделей Солнца, это очень сильно волнует теоретиков.

Именно такая ситуация в конечном счете привела к открытию дрожаний или колебаний Солнца. Открытие таких дрожаний аризонским исследователем Генри Хиллом является одной из самых интересных (в том числе по своему неправдоподобию) страниц истории астрономии.

Все началось совсем в стороне от исследований Солнца, с новой теории Вселенной Бранса и Дикке, которая была предложена ими в противовес общей теории относительности Эйнштейна. Это так называемая скалярно-тензорная теория гравитации. При анализе этой теории стало ясно, что Солнце может помочь в решении вопроса, действительно ли теория Эйнштейна неверна. Как уже упоминалось, планета Меркурий может служить хорошим «зондом» для изучения гравитационного поля Солнца. Эллиптическая орбита этой планеты непрерывно поворачивается в пространстве, то есть орбита представляет собой вращающийся эллипс, положение которого после того, как планета совершила полный оборот, будет несколько отличаться от прежнего. Это движение, называемое поворотом перигелия Меркурия, имеет дополнительную составляющую, с большой точностью объясняемую общей теорией относительности Эйнштейна. Объяснение всех трудностей, связанных с поведением ближайшей к Солнцу планеты, было как раз одним из триумфов общей теории относительности.

Новая теория взаимодействия вещества и гравитации Бранса — Дикке не смогла объяснить смещения, соответствующего 7% дополнительной составляющей движения орбиты Меркурия.

Дикке нашел следующий выход из создавшегося положения. Он предположил, что Солнце слегка сплюснуто, как апельсин; в этом случае Меркурий не будет двигаться в совершенно симметричном солнечном гравитационном поле. Для сохранения теории необходимо весьма незначительное искажение формы Солнца; достаточно, чтобы его экваториальный и полярный радиусы отличались всего на 30 км. Таким образом, необходимо было снова обратиться к исследованию Солнца.

Однако измерения таких малых (~0,05%) искажений формы Солнца очень трудны. Теоретикам также надо была понять, из-за чего Солнце может оказаться сплюснутым. Была предложена гипотеза, что сплюснутость объясняется быстрым вращением ядра. Это бы означало, что ядро вращается быстрее внешних слоев Солнца. Такая идея казалась привлекательной и по другой причине: быстрое вращение понизила бы температуру в центре Солнца и тем самым уменьшило бы поток нейтрино. Таким образом, теория Эйнштейна оказалась под ударом, поскольку новая теория могла походя решить проблему нейтрино. Только измерения могли решить этот вопрос.

Поверхность Солнца — не гладкая. Бури, вспышки и солнечные пятна искажают ее. Более того, эти явления влияют на яркость и вносят тем самым ошибку в измерения формы диска. Генри Хилл в Аризонском университете построил телескоп, специально предназначенный для обнаружения искажения формы солнечного края. Однако никаких искажений не было обнаружено. Это означало, что Эйнштейн был прав; центральные части Солнца не испытывают быстрого вращения, а проблема нейтрино остается все еще нерешенной. Но путем многочисленных измерений Хилл и его коллеги открыли новое явление: периодические колебания Солнца. На солнечном лимбе он обнаружил явление, подобное колокольному звону. Но этот звон имеет очень низкий тон, основной период колебаний равен 52 мин: кроме того, «слышны» еще несколько гармоник.

Открытие колебаний Солнца, сделанное совершенно случайно в результате проверки неверной теории, имеет важные последствия для теоретиков-создателей солнечных моделей. Подобно тому как сейсмические колебания Земли, вызванные землетрясениями, дают информацию о внутренней структуре Земли, нормальные моды колебания Солнца сильно зависят от распределения температуры и плотности внутри Солнца. Кембриджские исследователи использовали удивительные результаты Хилла для критического анализа моделей структуры Солнца. Классические солнечные модели выдержали это испытание с честью, но в результате нейтринная проблема так и остается нерешенной.

Другие группы исследователей сообщили об обнаружении солнечных колебаний с еще более длинными периодами, равными почти трем часам. Поскольку эти измерения не были подтверждены независимыми экспериментами, они пока не могут считаться надежно установленными. Но если трехчасовые колебания Солнца окажутся действительно реальными, это снова вызовет смятение в умах теоретиков.

По нашему мнению, современные представления о центральных областях Солнца хорошо обоснованы, причем теория и наблюдения неплохо подтверждают друг друга. Это также означает, что модели эволюции звезд главной последовательности подобных Солнцу, по всей вероятности, близки к истине. Конечно, изучение самих звезд помогает подтвердить результаты солнечных исследований. Особенно важным представляется изучение поведения звездных скоплений. Когда в космическом газовом облаке рождается звездное скопление, его члены сильно различаются по массе. Поскольку звезды с большей массой эволюционируют быстрее, в каждый определенный момент скопление представляет собой картину звездной эволюции: тяжелые звезды почти при смерти, а небольшие только-только начали использовать свои топливные запасы. Поэтому диапазон свойств звезд внутри скопления характеризует различные фазы развития нормальной звезды. Изучение скопления является наиболее важной основой для проверки звездных моделей. Анализ звездных скоплений подтвердил нашу веру в надежность солнечных моделей.

В этом кратком обзоре мы подошли к пределу наших знаний о структуре внутренних областей Солнца. Помогут ли новые результаты решить проблему нейтрино? Будем надеяться на это. В оставшейся части этой книги наше внимание будет обращено на то, что можно назвать наружностью Солнца, на те слои, которые непосредственно поддаются наблюдениям.

<<< Назад
Вперед >>>

Генерация: 0.694. Запросов К БД/Cache: 0 / 0
Вверх Вниз