Книга: Как работает Вселенная: Введение в современную космологию

1.2.5. Выделенная система отсчета

<<< Назад
Вперед >>>

1.2.5. Выделенная система отсчета

Ньютоновская механика построена вокруг идеи инерциальной системы отсчета. Первый закон Ньютона справедлив только в таких системах. Инерциальная система связана с телом, которое не взаимодействует с остальной частью Вселенной. Возможно ли это? На любое тело можно воздействовать с помощью механических сил, таких как сила натяжения привязанной к телу веревки[13], и четырех фундаментальных сил: электромагнитных, слабых[14], сильных[15] и гравитационных. Электромагнитные, слабые и сильные силы действуют лишь на некоторые из частиц, которые имеют ненулевые заряды соответствующего типа. Гравитационная сила, с другой стороны, является универсальной; она действует на все тела во Вселенной. Даже безмассовые частицы, такие как фотоны, подвержены силе гравитационного притяжения. Поэтому не ясно, каким образом можно обеспечить инерциальную систему отсчета в присутствии гравитационного поля.

ОТО тоже выделяет некоторые системы отсчета, но, в отличие от ньютоновской механики, они не должны быть подвержены действию никаких сил, кроме гравитационных. В таких системах отсчета справедливы все физические законы, в том числе законы специальной теории относительности (СТО). Чтобы ускорить тело в такой системе, на него надо воздействовать с помощью любой внешней силы, кроме силы тяжести. Другими словами, это системы, в которых наблюдатель свободно падает. Проиллюстрируем это на двух простых примерах.

Человек спит в своей постели. Для вящей точности укажем, что кровать неподвижна относительно земли, т. е. ее географические координаты постоянны. С ньютоновской точки зрения человек находится в состоянии покоя в приблизительно инерциальной системе отсчета. Это не совсем инерциальная система, потому что этот человек вращается (вместе с его кроватью) вокруг центра Земли, вокруг Солнца (вместе с Землей), вокруг центра Млечного Пути (вместе с Солнечной системой), падает по направлению к скоплению в созвездии Дева (вместе с галактикой Млечный Путь), к Великому аттрактору (вместе со скоплением в Деве) и т. д.[16] Но давайте не будем слишком придирчивы и назовем эту систему инерциальной. Человек находится под воздействием двух основных сил (и множества незначительных): гравитационного притяжения Земли, известного как вес, а также силы давления со стороны кровати из-за сил упругости. Эти силы компенсируют друг друга, в результате чего человек находится в состоянии покоя.

Рассмотрим ту же ситуацию с точки зрения ОТО. В этом случае выделенная система довольно сильно отличается: это система отсчета свободно падающего наблюдателя. Человек, который спит в постели, не пребывает в состоянии покоя в этой системе из-за силы давления со стороны кровати.

Второй случай – это космонавт на орбите вокруг Земли. С ньютоновской точки зрения его система никаким образом не выделенная, так как он находится под воздействием силы тяжести и его траектория искривлена. Это может быть описано двумя способами. В системе отсчета, связанной с Землей, гравитационная сила действует как центростремительная сила, в результате чего его траектория изгибается. В неинерциальной системе отсчета, связанной с космическим кораблем, сила тяготения компенсируется так называемой центробежной силой, что заставляет космонавта ощущать себя в состоянии невесомости.

Эта ситуация выглядит намного проще в рамках выделенной системы отсчета ОТО. На космонавта действует только сила тяжести, т. е. не действуют никакие негравитационные силы, и он, таким образом, покоится в данной системе отсчета. Космический корабль на орбите свободно падает на Землю, но постоянно промахивается из-за тангенциальной скорости[17]. Это основной принцип, который делает возможным полеты в космос.

Космонавт, покоясь в выделенной системе, испытывает невесомость. Тем не менее, если на него воздействовать некоторой негравитационной силой (пихнуть палкой, притянуть веревкой, дать космонавту достаточно сильный магнит и т. д.), этот космонавт будет двигаться, согласно второму закону Ньютона.

Проиллюстрируем силы, действующие в обоих подходах, на рис. 1.1 и 1.2.



<<< Назад
Вперед >>>

Генерация: 1.375. Запросов К БД/Cache: 3 / 1
Вверх Вниз