Книга: Достучаться до небес: Научный взгляд на устройство Вселенной

В ПОИСКАХЛЕПТОНОВ

<<< Назад
Вперед >>>

В ПОИСКАХЛЕПТОНОВ

Специалисты по физике элементарных частиц делят частицы Стандартной модели на две категории. Частицы первого типа известны как лептоны.

В эту категорию попадают частицы, не участвующие в сильном взаимодействии. В первую очередь это электроны; в Стандартной модели присутствуют также две более тяжелые версии электрона, обладающие таким же зарядом, но гораздо большей массой, — мюон и тау–лептон. Оказывается, имеется три, обладающих одинаковым зарядом варианта каждой из встречающихся нам в повседневной жизни частиц Стандартной модели; при этом каждое следующее поколение тяжелее предыдущего. Мы не знаем, почему таких вариантов именно три. Говорят, что лауреат Нобелевской премии по физике 1944 г. Исидор Айзек Раби, услышав о существовании мюона, воскликнул в изумлении: «Кто заказывал?»

Самые легкие лептоны обнаружить проще всего. Хотя и электроны, и фотоны отдают энергию в электромагнитном калориметре, различить их легко: электрон имеет электрический заряд, а фотон — нет. Из этих частиц только электрон, прежде чем отдать энергию калориметру ECAL, оставляет трек во внутреннем детекторе.

Распознать мюоны тоже относительно легко. Подобно всем остальным тяжелым частицам Стандартной модели, мюоны распадаются так быстро, что в обычном веществе их обнаружить невозможно, и вне эксперимента мы на Земле их почти не видим. Однако мюоны живут все же достаточно долго, чтобы успеть добраться до внешних слоев детектора. Поэтому они оставляют за собой длинные, ясно различимые треки, и экпериментаторы могут проследить их путь сквозь все слои от внутреннего детектора до внешних мюонных камер. Мюоны — единственные частицы Стандартной модели, способные добраться до внешних детекторов и оставить в них видимый след, поэтому распознать и выделить их несложно.

Тау–частицы, хотя они и заметны, обнаружить уже не так просто. Тау–частица представляет собой заряженный лептон, подобный электрону и мюону, но превосходит то и другое по массе. Как и большинство тяжелых частиц, она нестабильна; это значит, что тау–частица распадается, оставляя после себя группу других частиц. Любая тау–частица стремительно распадается на легкий заряженный лептон и две частицы под названием нейтрино или на одно нейтрино и частицу под названием пион, участвующую в сильном взаимодействии. Экспериментаторы изучают продукты распада — частицы, на которые распалась первоначальная нестабильная частица, — чтобы определить, не было ли на их месте тяжелой нестабильной частицы, и если таковая была, то какими свойствами обладала. Сам тау–лептон не оставляет трека, но по информации о продуктах распада, которые регистрирует экспериментальная установка, можно распознать эту частицу и ее свойства.

Электрон, мюон и еще более тяжелый тау–лептон имеют одинаковые заряды, равные -1 и противоположные заряду положительно заряженного протона. Кроме того, в коллайдерах рождаются античастицы, соответствующие этим заряженным лептонам, — позитрон, антимюон и антитау–лептон. Эти античастицы имеют заряд +1 и оставляют в детекторах треки, похожие на треки соответствующих частиц, но из?за противоположного заряда в магнитном поле они отклоняются в противоположную сторону.

Кроме только что описанных трех типов заряженных лептонов Стандартная модель содержит нейтрино — очень легкие лептоны, не несущие никакого электрического заряда. Если три заряженных лептона участвуют как в электромагнитном, так и в слабом взаимодействии, то нейтрино заряда не имеют и потому нечувствительны к электрическим силам. До 1990–х гг. экспериментальные результаты указывали, что нейтрино имеют нулевую массу. Одним из интереснейших открытий того десятилетия стало обнаружение у нейтрино чрезвычайно малой, но неисчезающей массы покоя; это показало, что Стандартная модель физики частиц неполна.

Хотя нейтрино — очень легкие частицы и, соответственно, попадают в энергетический диапазон любого коллайдера, их невозможно непосредственно обнаружить на БАКе. Не имея электрического заряда, они очень неохотно вступают во взаимодействие с веществом — настолько неохотно, что человек, тело которого каждую секунду пронизывает более 50 трлн солнечных нейтрино, может узнать об этом, только если ему кто?нибудь расскажет.

Несмотря на невидимость нейтрино, физик Вольфганг Паули предсказал их существование в качестве «отчаянной меры», пытаясь объяснить, куда девается энергия при распаде нейтронов. Долгое время казалось, что в этом процессе нарушается закон сохранения энергии, потому что протон и электрон, которые удавалось обнаружить на месте распада нейтрона, вместе не давали полной энергии, которой прежде обладал нейтрон. Даже известные физики, такие как Нильс Бор, в то время готовы были поступиться принципами и признать, что энергия может теряться безвозвратно. Паули оказался верен известным физическим принципам и предположил, что энергия все же сохраняется, просто экспериментаторы не могут увидеть ту электрически нейтральную частицу, которая уносит с собой недостающую ее часть. Он оказался прав.

Паули назвал свою гипотетическую на тот момент частицу нейтроном, но позже это название оказалось занято — его использовали для обозначения составной части атомного ядра, нейтрального партнера протона. Так что Энрико Ферми — итальянскому физику, разработавшему теорию слабых взаимодействий (хотя публика лучше знает его как одного из создателей первого ядерного реактора) — пришлось дать этой частице забавное имя нейтрино, что по–итальянски означает «нейтрончик». Конечно, нейтрино — никакой не нейтрон, но, подобно нейтрону, эта частица не несет на себе электрического заряда. С другой стороны, нейтрино действительно много легче нейтрона.

Нейтрино, как и всех других частиц Стандартной модели, существует три типа. Каждому заряженному лептону — электрону, мюону и тау–частице — соответствует свое нейтрино, с которым названная частица взаимодействует посредством слабого взаимодействия[44].

Мы уже говорили о том, как можно обнаружить электроны, мюоны и тау–частицы, так что остается только разобраться, как экспериментаторы обнаруживают нейтрино. Поскольку нейтрино не имеют электрического заряда и неохотно вступают во взаимодействие, они вылетают из детектора прочь, не оставляя никакого следа. Как же ученым БАКа определить, что нейтрино там вообще были?

Импульс (при медленном движении он равен произведению массы на скорость, но при скоростях частиц, близких к скорости света, его удобнее описать как сгусток энергии, движущийся в определенном направлении) сохраняется в проекции на любое направление. Как и в случае с энергией, до сих пор ученым не удалось обнаружить никаких свидетельств того, что импульс может безвозвратно теряться. Так что если суммарный импульс частиц, зарегистрированных детектором, меньше, чем вошедший туда импульс, это означает, что какая?то другая частица (или частицы) сумела улизнуть, унося с собой недостающую часть. Именно такая логика позволила Паули сделать вывод о существовании нейтрино (в его случае — при ядерном бета–распаде); именно таким образом мы и по сей день узнаем о присутствии этих слабо взаимодействующих и почти невидимых частиц[45].

В адронных коллайдерах экспериментаторы измеряют все импульсы в поперечных к пучку направлениях, суммируют и смотрят, весь ли импульс на месте. Они рассматривают только поперечные направления, потому что в продольных направлениях полный импульс зарегистрировать намного труднее — ведь немалая его часть уносится частицами, продолжающими движение по трубке пучка. Импульс, перпендикулярный направлению движения первоначального протонного пучка, измерить и учесть проще.

Суммарный поперечный импульс сталкивающихся в коллайдере частиц практически равен нулю; нулю, соответственно, должен равняться и суммарный поперечный импульс возникших в результате столкновения частиц. Поэтому, если измерения идут вразрез с ожиданиями, экспериментаторы могут смело заключить, что чего?то не хватает. Остается только разобраться, какая это была из множества потенциально возможных невзаимодействующих частиц. Для обычных процессов Стандартной модели ответ известен заранее: незарегистрированными останутся нейтрино. Исходя из известных характеристик слабого взаимодействия (мы поговорим о нем чуть позже), в котором участвуют нейтрино, физики проводят расчет и прогнозируют частоту их появления. Кроме того, физики уже знают, как должен выглядеть распад W–бозона, — к примеру, одиночный электрон или мюон с поперечным импульсом, соответствующим по энергии примерно половине массы W–бозона, представляет собой чрезвычайно редкое явление и свидетельствует именно об этом. Поэтому, исходя из закона сохранения импульса и теоретически рассчитанной входной величины, нейтрино можно «вычислить». Естественно, у этих частиц меньше идентифицирующих «ярлычков», чем у тех, что мы наблюдаем непосредственно. Об их присутствии можно судить лишь по комбинации теоретических соображений и измеренной величине недостающей энергии.

Очень важно помнить об этом, рассматривая новые открытия. Примерно такие же рассуждения позволяют судить о присутствии и других новых частиц, не несущих заряда или несущих заряд настолько слабый, что их невозможно обнаружить непосредственно. Только недостаток суммарной энергии вкупе с теоретическим расчетом входных параметров позволяет судить, что происходило на самом деле и какие «действующие лица» сумели ускользнуть незамеченными. Вот почему так важна герметичность детектора для регистрации как можно большей доли поперечного импульса.

<<< Назад
Вперед >>>

Генерация: 9.118. Запросов К БД/Cache: 3 / 1
Вверх Вниз