Книга: Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы

Кембрийский взрыв

<<< Назад
Вперед >>>

Кембрийский взрыв

В самом начале кембрийского периода, примерно 542 млн лет назад, многие группы животных почти одновременно стали обзаводиться твердым минерализованным скелетом. Поскольку в ископаемом состоянии обычно сохраняются именно такие скелеты, а мягкие части бесследно исчезают, это событие в палеонтологической летописи выглядит как внезапное, «взрывное» появление многих групп животных (моллюсков, членистоногих, губок, археоциат, брахиопод, к которым несколько позже присоединяются иглокожие, кораллы, мшанки и другие). Отсюда и общепринятое название этого события — «кембрийский взрыв».

Вся та палеонтология, о которой мы говорили до сих пор, — палеонтология докембрия, то есть изучающая архейский и протерозойский эоны со всеми биомаркерами, окремненными цианобактериями, акритархами, городискиями и мягкотелыми животными венда, — стала интенсивно развиваться лишь сравнительно недавно. До этого момента докембрийские толщи казались ученым практически мертвыми, не содержащими почти никаких следов жизни. «Кембрийский взрыв» выглядел внезапным появлением множества разнообразных организмов словно бы из ниоткуда. Поэтому докембрий назвали криптозоем — временем «скрытой жизни», а последний этап развития биосферы, начавшийся с кембрия и включающий палеозойскую, мезозойскую и кайнозойскую эры, носит название фанерозоя (время «явной жизни»).

Дарвин считал кембрийский взрыв одним из фактов, не укладывающихся в его теорию постепенных эволюционных изменений. Впоследствии выяснилось, что «взрыв» на самом деле был не таким уж взрывообразным. Как мы теперь знаем, предки многих кембрийских групп жили и раньше, но они были по большей части бесскелетными, мягкотелыми. Именно поэтому палеонтологи долго не могли обнаружить их остатков в докембрийских породах.

Загадка кембрийского взрыва, тем не менее, осталась, только теперь речь идет не о внезапном возникновении как бы «из ничего» многих типов животных, а о более или менее одновременном появлении у них минерального скелета. Это могло быть связано с изменениями условий среды. Например, к такому эффекту могло бы привести резкое уменьшение кислотности воды, в результате чего карбонат кальция (CaCO3) — самый распространенный у животных скелетообразующий материал — стал хуже растворяться в морской воде и легче выпадать в осадок. Предложен и целый ряд других объяснений. Хорошие популярные рассказы о кембрийском взрыве и теориях, предложенных для его объяснения, можно найти в книгах А. Ю. Розанова «Что произошло 600 миллионов лет назад» (1986) http://www.lib.prometey. org/?id=i4599 и К. Ю. Еськова «История Земли и жизни на ней» (2000) http://warrax.net/51/eskov/cover_eskov.htm. Обе книги, к счастью, находятся в открытом доступе в Интернете, поэтому повторяться нет необходимости. Я расскажу лишь об одном недавнем исследовании, которое имеет отношение одновременно и к кембрийскому взрыву, и к сравнительной геномике, и к ранней эволюции животных, и к некоторым идеям, изложенным выше в этой главе.

Для того чтобы дружно обзавестись карбонатными (то есть сделанными из CaCO3) скелетами, животным недостаточно было одних лишь благоприятных условий среды. Нужны были еще специальные гены и ферменты, при помощи которых животные могли бы контролировать образование и рост кристаллов карбоната кальция в нужных местах и в нужном количестве.

Важнейшую роль в образовании карбонатных скелетов у животных играют ферменты карбоангидразы, которые примерно в миллион раз ускоряют реакцию превращения растворенного в воде углекислого газа в гидрокарбонат:

CO2 + H2O —>Carbonyc anhydrase HCO3- + H+

Карбоангидразы широко распространены в живом мире, в том числе и у прокариот. Помимо биоминерализации они участвуют в выполнении множества других функций (регуляция pH, транспорт ионов, выведение CO2 из тканей и др.). До сих пор оставалось неясным, когда и в какой последовательности разные группы животных обзаводились карбоангидразами. Возможно, они уже имели эти ферменты к началу «кембрийской скелетной революции» — в этом случае надо признать, что скелетообразование не является первичной функцией карбоангидраз у животных, но могло быть и так, что независимое приобретение генов карбоангидраз разными группами организмов как раз и послужило толчком к появлению скелетов.

Для прояснения ситуации очень не хватало геномных данных по самым примитивным многоклеточным животным, таким как губки. Биологи из Германии и Австралии недавно восполнили этот пробел, изучив скелетообразующие ферменты у примитивной архаичной губки Astrosclera willeyana[66]. Это настоящее «живое ископаемое»: род Astrosclera существует больше 200 млн лет (с конца триасового периода), а по строению своего карбонатного скелета эта губка очень близка к формам, процветавшим еще в палеозое (так называемым строматопоратам).

Скелет астросклеры состоит из мелких сферических элементов, которые постепенно растут и сливаются друг с другом. Ученые выделили из скелета губки органическую фракцию, а из нее — все белки. Три преобладающих белка оказались карбоангидразами. Исследователи определили их аминокислотную последовательность, а затем по этой последовательности «выудили» из генома и три соответствующих гена. Это позволило, сравнивая между собой нуклеотидные последовательности генов карбоангидраз примитивной губки и высших животных, чьи геномы уже прочтены, реконструировать эволюцию этих белков у животных.

Ученые пришли к выводу, что все многочисленные и разнообразные карбоангидразы животных происходят от одного предкового белка, который имелся у последнего общего предка всех животных. В разных эволюционных линиях ген этой исходной карбоангидразы неоднократно подвергался независимым дупликациям (удвоениям). Так возникали различные новые варианты карбоангидраз. «Последний общий предок всех животных», вне всяких сомнений, жил задолго до кембрийской скелетной революции. Получается, что животные изначально были хорошо подготовлены (преадаптированы) к развитию минерального скелета — у них с самого начала были ферменты, способные резко ускорить образование карбоната кальция. Эти ферменты, очевидно, использовались докембрийскими мягкотелыми животными для других целей — как уже говорилось, у карбоангидраз в животном организме хватает работы и без скелетообразования. Когда условия среды стали благоприятствовать биоминерализации, разные группы животных не сговариваясь «привлекли» часть своих карбоангидраз к выполнению новой функции.

Совсем недавно была опубликована еще одна интересная работа, посвященная исследованию геномов губок[67].

Оказалось, что у этих примитивных многоклеточных уже есть значительная часть комплекса так называемых постсинаптических белков, которые у более высокоорганизованных животных функционируют в нервных клетках и участвуют в «приеме сигнала». У губок, однако, нет нервных клеток. Зачем же им эти белки? По всей видимости, они участвуют в обмене сигналами между клетками губки. Животное может не иметь нервной системы, но если его клетки совсем не будут «общаться» друг с другом, это будет уже не животное, а скопление одноклеточных организмов. Позже, когда у животных развилась нервная система, эти «коммуникационные» белки пригодились для формирования системы обмена сигналами между нервными клетками. Этот пример, как и множество других, показывает, что большинство эволюционных новшеств возникает не на пустом месте, а собирается из «подручного материала», причем часто для радикального изменения функции какого-нибудь белка или белкового комплекса достаточно совсем небольших генетических изменений.

<<< Назад
Вперед >>>

Генерация: 1.107. Запросов К БД/Cache: 3 / 0
Вверх Вниз