Книга: От атомов к древу. Введение в современную науку о жизни
Причины взрыва
<<< Назад А был ли взрыв? |
Вперед >>> Пришествие хищника |
Причины взрыва
Итак, в начале кембрия невероятно быстро возникло множество новых крупных эволюционных ветвей животных. Такого не случалось больше никогда, ни раньше, ни позже. Даже после катастрофических массовых вымираний (о которых речь впереди) животный мир восстанавливался за счет нарастания разнообразия уже существовавших больших групп, а не за счет появления новых. Вот почему кембрийский взрыв обязательно требует объяснения.
Правда, «невероятно быстро» не значит «мгновенно». Новые группы животных отнюдь не появились в начале кембрия все разом в полном составе, как актеры после подъема занавеса. Кембрийский взрыв был хоть и сильно сжатым во времени, но все же постепенным. Скорость эволюционных процессов в нем вполне можно измерить, и такие исследования, как мы видели, есть. Кембрий длился примерно 57 миллионов лет (542–485 млн лет назад), при этом в самом его начале (первые шесть миллионов лет) морская фауна была еще довольно бедна. Новые группы животных появились там действительно быстро, по меркам истории Земли, но вовсе не одномоментно.
С чем же все-таки это было связано? За полтора века, прошедших с тех пор, как ученые (и в том числе Чарльз Дарвин) осознали загадку кембрийского взрыва, предлагались разнообразнейшие объяснения этого события, от генетических до космических. Одна современная обзорная статья на эту тему так и называется — «По ту сторону кембрийского взрыва: от галактики до генома»[475]. Например, тенденция к массовому образованию минеральных скелетов — знаменитая «скелетная революция», она же «биоминерализация», — в начале кембрия охватила не только самых разных многоклеточных животных, но и одноклеточных эукариот, и некоторые водоросли. Напрашивается предположение, что это было связано с глобальным изменением химического состава внешней среды, то есть в данном случае морской воды. И в самом деле, показано, что в начале кембрия по каким-то чисто геологическим причинам примерно в три раза выросла концентрация в морской воде кальция (Ca2+) — иона, который нужен для создания твердых скелетов как никакой другой[476]. Минеральная основа скелетов животных — чаще всего карбонат кальция (раковины моллюсков, иглы и чашечки коралловых полипов, спикулы губок), а иногда фосфат кальция (кости позвоночных). Уже из этих названий ясно, что без кальция тут так или иначе не обойтись.
Проблема в том, что объяснить скелетную революцию еще не значит объяснить сам кембрийский взрыв. Скелетная революция всего лишь снабдила твердыми минерализованными тканями животных, уже существовавших к моменту ее начала. Причем это коснулось далеко не всех из них. В тех кембрийских местонахождениях, тип сохранности которых допускает захоронение бесскелетных существ, сразу же обнаруживается, что значительная часть кембрийской фауны так и осталась «мягкотелой». Так что дело не в скелетах. Явление, которое надо объяснить в первую очередь, — это уникальное ускорение эволюции многоклеточных животных, очень быстро (за конец эдиакария и начало кембрия) создавшее множество новых крупных групп, неважно, скелетных или нет.
В дальнейшем рассказе мы будем исходить из сценария, который кратко изложил еще в начале 1970-х годов американский палеонтолог Стивен Стэнли. Конечно, тут надо помнить, что палеонтология — очень быстро развивающаяся наука. Работы 40-летней давности в ней всегда требуют поправок, и мы эти поправки по ходу разговора внесем. Правда, в данном случае это будут скорее дополнения. Главная идея Стэнли исключительно хорошо выдержала проверку временем. Сумма фактов, известных на данный момент, вполне в нее вписывается.
Начнем с начала. На полях заметим: решить, что именно стоит принять за «начало», при разборе любого исторического процесса — задача непростая, ведь причинно-следственные цепочки могут тянуться в прошлое едва ли не до бесконечности, сбивая неосторожного исследователя с толку. В нашем случае «началом» будет эдиакарская биота. Что же она собой представляла?
В экологии принято выделять организмы-средообразователи, активность которых определяет собой структуру целых сообществ. Такие организмы называются эдификаторами. Например, в дубраве эдификатором является дуб, в маленьком тихом пруду им вполне может быть ряска, и т. д. Так вот, в эдиакарских морях эдификаторами были покрывавшие дно «ковры» нитчатых водорослей — так называемые водорослевые маты[477]. На этих «коврах» жили уже знакомые нам вендобионты. Большинство из них вело прикрепленный образ жизни. Как они питались — не совсем понятно, но, скорее всего, осмотрофно, всасывая из воды растворенные вещества всей поверхностью тела. Таким способом до сих пор питаются некоторые морские протисты, например крупные — до 20 сантиметров! — многоядерные ксенофиофоры, похожие на гигантских амеб (они относятся к супергруппе Rhizaria). Вендобионты вполне могли быть близки к ним по образу жизни.
Впрочем, на эту тему есть и другие идеи. В 1986 году палеонтолог Марк Макменамин предположил, что вендобионты были экологическими аналогами современных погонофор — глубоководных кольчатых червей, лишенных рта и кишечника. Погонофоры живут в океане на такой глубине, куда солнечный свет не проникает. Зато там встречаются горячие источники, выделяющие в воду сероводород (H2S). Тело погонофоры набито симбиотическими бактериями, которые окисляют сероводород до серы и полученную при этом энергию используют для фиксации углекислоты, как при фотосинтезе. За счет этого процесса питаются и сами бактерии, и червь, в котором они живут. Некоторые погонофоры питаются за счет других бактерий, окисляющих не сероводород, а метан, но тоже автотрофных. В любом случае погонофоры — это фактически автотрофные животные. Что касается вендобионтов, то им было еще проще: они часто жили на мелководье, где солнечного света хватало для фотосинтеза, и вполне могли бы питаться за счет наполнявших их тело симбиотических одноклеточных водорослей. Это тоже реально, есть современные черви и моллюски, которые именно так и делают. Правда, у них этот способ питания обычно является дополнительным, но почему бы ему не стать и основным? Мир вендобионтов, где никто никого не ел, Макменамин назвал «садом Эдиакары», с явной шуточной аллюзией на сад Эдема[478]. Большой недостаток этой гипотезы в том, что ее пока трудно проверить. К тому же она заведомо не может распространяться на всех вендобионтов без исключения: некоторые из них жили в море глубже уровня, куда проникает достаточно света для фотосинтеза[479]. Но в конце концов, в разных условиях они могли питаться по-разному.
Парадокс в том, что концепция «сада Эдиакары» представляется близкой к истине при любом сколько-нибудь реалистичном предположении о способе питания вендобионтов. Тут уже и неважно, жили в них водоросли или нет. В эдиакарском мире действительно никто никого не ел (не считая одноклеточных организмов). Принципиально важно, что в эдиакарских сообществах до некоторого момента не было не только хищников (которые питались бы другими животными), но и «травоядных» (которые умели бы механически соскребать водоросли). Таким образом, водорослевым матам там никто особо не мешал расти.
Все изменилось, когда повышение концентрации кислорода в морской воде (судя по геологическим данным, оно шло постепенно в течение всего эдиакария) позволило некоторым многоклеточным существам ускорить обмен веществ настолько, чтобы начать вести по-настоящему активный образ жизни. Тогда появились «сборщики урожая» — крупные животные со сложной двигательной системой и ртом, которые перемещались по водорослевым матам и выедали их значительные участки. Одним из таких «сборщиков» была знакомая нам кимберелла. По образу жизни и по скорости передвижения первые эдиакарские животные-водорослееды, скорее всего, приблизительно напоминали современных улиток. Для нас это выглядит безобидно, но с точки зрения эдиакарских жителей появление таких чудищ было настоящей катастрофой. Водорослевые маты немедленно перестали быть сплошными. К тому же животные не только соскребали их сверху, но и объедали снизу, освоив для этого проникновение в грунт (у зоологов принято называть такое поведение «минированием»). Тут досталось заодно и вендобионтам, которые в конце эдиакария просто исчезли.
С этого момента начала работать общая закономерность, установленная экологами уже давно и проверенная разными способами вплоть до прямых экспериментов: в условиях давления хищника разнообразие его жертв повышается по сравнению с сообществом, где хищников нет вовсе[480]. Если раньше донные сообщества заполнялись очень немногочисленными доминирующими видами водорослей, то теперь равновесие рухнуло и на этом фоне началась бурная эволюция. А между тем набор экологических ниш, доступных животным, тоже расширялся. Появились, например, активные грунтоеды, приспособленные к тому, чтобы постоянно жить в норах, пропуская донный грунт сквозь кишечник и извлекая из него питательные вещества. Так и до сих пор живут многие морские черви, вроде пескожила. Черви-грунтоеды впервые стали рыть в морском дне не только горизонтальные, но и вертикальные ходы, вызывая обогащение грунта кислородом и тем самым дополнительно облегчая его заселение другими животными (см. рис. 17.1). Эти события получили название субстратной революции[481]. Таким образом, эволюционирующие животные не только занимали готовые экологические ниши, но и активно создавали новые, превращая процесс в автокаталитический (самоускоряющийся).
Некоторые жители поверхности дна стали расширять свои экологические ниши не в сторону грунта, а, наоборот, в сторону водной толщи. В результате возник зоопланктон — сообщество мелких животных, пребывающих взвешенными в воде и дрейфующих вместе с ней. Как правило, представители зоопланктона питаются, фильтруя воду и отцеживая из нее фитопланктон, то есть находящиеся в той же водной толще одноклеточные водоросли (а таких к моменту кембрийского взрыва было уже сколько угодно, на все вкусы). И действительно, в раннем кембрии в палеонтологической летописи появляются первые планктонные фильтраторы — жаброногие рачки[482]. Жаброноги, как и все ракообразные, обладатели членистых конечностей, исходно предназначенных для хождения по грунту, то есть по дну. Поэтому нет никаких сомнений, что ранние этапы своей эволюции они прошли на дне, а к планктонному образу жизни обратились только после этого.
Последствия появления зоопланктона, в свою очередь, оказались вполне глобальными. Дело в том, что животные-планктеры отфильтровывают из воды не только водоросли, но и любую взвесь, в которой могут быть хоть какие-то питательные вещества. В основном это распыленные остатки мертвых организмов. Отфильтровав взвесь и всосав из нее полезные молекулы, планктеры (в первую очередь ракообразные) аккуратно «упаковывают» остальное содержимое кишечника в плотные комки — фекальные пеллеты, которые из-за своей компактности быстро тонут и отправляются на дно. А вода в результате очищается. Пеллетная транспортировка взвеси — важнейший фактор, понижающий мутность воды в океане.
Надо сказать, что переменивший облик Земли феномен пеллетной транспортировки непосредственно связан с одной чисто физиологической особенностью животных, образующих основную массу зоопланктона, — ракообразных. Дело в том, что находящаяся в кишечнике пища у них окружается перитрофической мембраной — тонкой белково-хитиновой пленкой, пропускающей мелкие молекулы, но отфильтровывающей крупные. Остатки переваренной пищи оформляются в компактные пеллеты именно благодаря ей. Перитрофическая мембрана есть и у насекомых, что неудивительно: ведь насекомые — это на самом-то деле всего лишь одна из многих эволюционных ветвей ракообразных[483] [484]. «В лице» насекомых ракообразные освоили сушу. Впрочем, тут мы забегаем вперед.
Итак, после появления планктонных фильтраторов вода в океане стала прозрачной, свет начал проникать в нее на большую глубину и повысилась концентрация кислорода (часть которого раньше расходовалась на окисление той же мертвой взвеси). Первый фактор сразу увеличил глубину зоны, в которой света достаточно для фотосинтеза, а второй улучшил условия для придонной фауны. По всем данным, прозрачный насыщенный кислородом фанерозойский океан резко отличается от мутного докембрийского океана[485]. Заодно повысилась концентрация кислорода и в атмосфере. Естественно, что в новых благоприятных условиях разнообразие как растений, так и животных дополнительно выросло. Замкнулась еще одна автокаталитическая петля.
<<< Назад А был ли взрыв? |
Вперед >>> Пришествие хищника |
- «Большой взрыв жизни»
- А был ли взрыв?
- Причины взрыва
- Пришествие хищника
- Первопроходцы суши
- Леса и насекомые
- Парк пермского периода
- Пять великих рубежей
- Пермский кризис
- Пустынная планета
- Триасовое возрождение
- От клетки к социуму
- Муравьиными тропами
- Эусоциальный мозг
- Люди и селениты
- Космическая рулетка
- Физические и химические причины кембрийского взрыва
- 5.2. Загрязнения атмосферы при взрывах
- Цветы на стволах и причины этого явления
- Экваториальный пояс лесов и причины его происхождения
- Причины равномерной температуры вблизи экватора
- Причины расстройств поведения
- 26. Причины устойчивости и смены экосистем
- 6.4. Макроэволюция. Направления и пути эволюции (А.Н. Северцов, И.И. Шмальгаузен). Биологический прогресс и регресс, аро...
- 4. Заразные болезни, их причины и способы борьбы с ними
- 3.6. Изменчивость признаков у организмов: модификационная, мутационная, комбинативная. Виды мутаций и их причины. Значен...
- 5.6. Причины устойчивости и смены экосистем
- 3.3. Онтогенез и присущие ему закономерности. Специализация клеток, образование тканей, органов. Эмбриональное и постэмб...