Книга: Приспособиться и выжить!

Красное и зеленое

<<< Назад
Вперед >>>

Красное и зеленое

Крысы, мыши, белки, кролики, козы и другие млекопитающие имеют единственный MWS/LWS-опсин с максимумом поглощения при длине волны 510–550 нм. Этот опсин кодируется единственным геном. Напротив, человек обладает двумя опсинами (MWS и LWS), которые кодируются двумя генами на X-хромосоме, расположенными в тандеме «голова к хвосту». Последовательности ДНК этих двух опсинов совпадают на 98 %. Столь большое сходство и ближайшее соседство этих генов говорит о том, что они возникли в результате удвоения единственного гена опсина MWS/LWS у какого-то примата-предка. Удвоение генов — довольно распространенная форма изменения последовательности ДНК; многие наши гены в ходе эволюции приобрели по несколько копий. Рост числа копий гена увеличивает количество информации, на которую может влиять естественный отбор, и достаточно часто функции этих копий со временем начинают различаться. Именно это произошло с двумя олеинами на X-хромосоме.

Наша пара опсинов, как и опсины других приматов с три-хроматическим зрением, в наибольшей степени стимулируется светом с длиной волны 530 нм (зеленый) и 560 нм (красный) — это их максимумы поглощения. Изучение функциональных свойств опсинов показало, что их спектр поглощения достаточно легко изменить путем замены определенных аминокислотных остатков. То, что у всех приматов с трихроматическим зрением максимумы поглощения белков сохранились на длине волны 530 и 560 нм, означает, что это свойство белков поддерживается естественным отбором.

Последовательности зеленого и красного пигментов различаются всего 15 аминокислотными остатками. Заменяя одну аминокислоту на другую и анализируя результат, ученые смогли установить, какие именно аминокислотные остатки отвечают за особые свойства каждого из пигментов.

По-видимому, основной вклад в различие в максимумах поглощения красного и зеленого пигментов вносят аминокислоты в положениях 180, 277 и 285. Аминокислоты, находящиеся в этих позициях в двух пигментах, а также их вклад в сдвиг максимума поглощения, представлены в табл. 4.1.

Таблица 4.1. Аминокислоты в ключевых позициях человеческих опсинов


Исследования показывают, что после удвоения гена пигмента MWS/LWS у нашего далекого предка две образовавшиеся копии стали функционировать по-разному (одна настроилась на восприятие света с диной волны 530 нм, другая — 560 нм) главным образом в результате изменения аминокислотных остатков в этих трех ключевых позициях (рис. 4.5).



Рис. 4.5. Удвоение и тонкая настройка гена опсина у человекообразных обезьян. У общего предшественника обезьян и человекообразных обезьян Старого Света произошло удвоение гена опсина. Со временем в двух копиях возникли мутации, которые привели к настройке двух опсинов на поглощение красного или зеленого цвета. Сохранению этих мутаций способствовал естественный отбор. Рисунок Лианн Олдс.

Удвоение гена красно-зеленого зрительного пигмента произошло после разделения приматов Старого и Нового Света. По-видимому, это случилось 30 млн или 40 млн лет назад, вскоре после разделения африканского и южноамериканского континентов. По-видимому, последовавшие за удвоением гена эволюционные изменения аминокислот в трех ключевых позициях предоставляли существенные преимущества. Теперь в Азии и Африке живут обезьяны только с трихроматическим зрением. Если в период возникновения цветового зрения рядом с этими обезьянами обитали и другие, не обладавшие такой способностью (что кажется вполне вероятным), то они и их потомки уже вымерли.

Конечно, мы не были свидетелями этих событий, произошедших 30 млн или 40 млн лет назад, и кто-то может возразить, что все сказанное выше — всего лишь гипотезы. Однако важная роль цветового зрения у приматов — неоспоримый факт. В частности, у диких обезьян очень редко встречается дальтонизм. У людей цветовая слепота — достаточно распространенное явление: около 8 % мужчин белой расы не различают некоторых цветов из-за аномалии генов красно-зеленых опсинов на X-хромосоме, однако в дикой природе это большая редкость. При исследовании 3153 макак дальтонизм был обнаружен лишь у трех особей (менее 0,1 %). Высокий уровень распространения дальтонизма у людей (у которых цветовое зрение, по крайней мере в настоящее время, находится под очень слабым влиянием естественного отбора) и низкий — у диких макак говорит о том, что естественный отбор поддерживает способность цветового восприятия у этих обезьян и у других видов, обладающих трихроматическим зрением.

Второе свидетельство в пользу большой экологической значимости трихроматического зрения у приматов дали наблюдения за тем, как выбирают пищу ди- и трихроматические приматы в природных условиях. Питер Лукас из Университета Гонконга, Натаниэль Домини (теперь работает в Университете Калифорнии в Санта-Крузе) и их коллеги предприняли подробное исследование пищевых привычек и предпочтений колобусов и шимпанзе в Уганде, лемуров на Мадагаскаре и паукообразных обезьян в Коста-Рике. Ученые обнаружили, что животные, обладающие трихроматическим зрением, отдают явное предпочтение более нежным красноватым листьям, которые содержат больше белка. Большинство исследованных приматов питались еще и фруктами, и цвет фруктов также имел для них значение. Однако Лукас и Домини считают, что полноценное цветовое зрение играет более важную роль в выборе листьев, особенно когда фруктов мало или они еще не поспели.

Таким образом, способность воспринимать красный и зеленый цвет, по-видимому, дает определенные преимущества. Однако красный и зеленый — это только часть видимого спектра, наиболее важная для обитателей лесов. Но животные населяют самые разные уголки планеты, в том числе моря, где способность различать красный и зеленый цвета абсолютно бесполезна.

<<< Назад
Вперед >>>

Генерация: 2.161. Запросов К БД/Cache: 2 / 0
Вверх Вниз