Книга: Разведка далеких планет
Нептун, открытый «на кончике пера»
<<< Назад Фаэтон, или Планета Ольберса |
Вперед >>> Плутон – наследие Ловелла |
Нептун, открытый «на кончике пера»
В эпоху становления классической механики, в XVII–XVIII вв., астрономам были известны все те же пять древних планет, видимых невооруженным глазом: Меркурий, Венера, Марс, Юпитер и Сатурн. Классическая механика Ньютона великолепно объяснила все особенности движения этих планет, их спутников, а также Земли и Луны. Когда в 1781 г. Вильям Гершель обнаружил за Сатурном новую планету Уран, это стало триумфом наблюдательной астрономии, но очень скоро превратилось в «головную боль» для физики: оказалось, что движение Урана не подчиняется законам Ньютона.
Через несколько лет после открытия Урана и определения его эллиптической орбиты движение планеты стало отклоняться от вычисленной траектории. Уран бросил вызов небесной механике – самой рафинированной ветви теоретической физики конца XVIII в. Вызов был принят. В 1790 г. французский астроном Жан Деламбр (1749–1822) разработал новую математическую модель движения Урана, которая учитывала не только притяжение со стороны Солнца, но и возмущающее влияние со стороны планет-гигантов: Юпитера и Сатурна. В рамках этой модели орбита Урана отличалась от идеального эллипса и прекрасно соответствовала наблюдениям.
В эпоху французских революций и наполеоновских войн наблюдения за планетами проводились не очень регулярно, а когда в 1815 г. астрономы сравнили положение Урана с расчетами, то вновь увидели, что он движется «не по науке». На защиту небесной механики встал французский академик, директор Парижской обсерватории Алексис Бувар (1767–1843). В 1821 г. он скрупулезно собрал все наблюдения за прошлыми положениями Урана на небе и по законам механики «с астрономической точностью» рассчитал будущее движение своенравной планеты с учетом влияния на нее всех прочих известных на тот момент планет. Довольный результатом, Бувар представил своим коллегам новую орбиту Урана, которая, однако, через 10 лет совершенно разошлась с наблюдениями. Всем стало ясно, что нужны новые идеи.
Итак, почему законы механики и теория тяготения Ньютона, великолепно зарекомендовавшие себя при решении множества других проблем, «не работают» в случае Урана? Быть может, неизвестная среда оказывает сопротивление движению планеты? Или на Уран воздействует еще одна неизвестная планета? Недавно один из историков науки назвал это «версией XIX века проблемы скрытой массы, так сильно интригующей астрономов сегодня». Действительно, обе проблемы состоят в том, что есть сила, но неизвестен ее источник. Вообще говоря, в начале XIX в. еще вполне можно было сомневаться в справедливости закона тяготения Ньютона. Если классическая механика была тысячей разных способов проверена в лаборатории, то гравитация проявляла себя лишь в движении планет. А оно-то как раз и дало сбой! Но может ли быть неверен закон тяготения великого Ньютона? Ведь он так прост и красив! А красота – не последний аргумент в науке. Поэтому с законом Ньютона решили не расставаться. Стали искать неизвестную планету. И нашли. Но как – в кабинетной тиши, не глядя на небо! Естествоиспытателей это восхищает больше, чем шахматная партия вслепую на двадцати досках.
Первым за поиск неизвестной планеты, не отходя от письменного стола, взялся великий немецкий астроном Фридрих Вильгельм Бессель (1784–1846). Прежде, с помощью телескопа, ему уже удалось нечто подобное: измеряя в течение ряда лет на меридианном круге точные координаты двух ярких звезд – Сириуса и Проциона, он установил в 1844 г., что они движутся не по прямым, а по волнистым траекториям. Не сомневаясь в справедливости законов Ньютона, Бессель предположил, что у каждой из этих звезд есть невидимый спутник, иными словами, это двойные системы, компоненты которых – видимый и невидимый – обращаются вокруг общего центра масс. Идея оказалась абсолютно верной: невидимые для Бесселя объекты действительно были обнаружены после создания более мощной оптики. 31 января 1862 г. при испытании только что изготовленного объектива диаметром 46 см знаменитый американский оптик Алван Кларк (1804–1887) заметил рядом с Сириусом крохотное светило. А в 1896 г. американский астроном Мартин Шеберле (1853–1924), наблюдая на Ликском рефракторе с объективом работы того же Кларка, открыл маленький спутник Проциона. Обе звездочки, существование которых предвидел Бессель, оказались первыми представителями нового типа объектов – белых карликов. Но это выяснилось позже. А попытка Бесселя обнаружить планету, возмущающую движение Урана, к сожалению, не дала результата: он умер, не закончив эту работу.
Вслед за Бесселем открыть планету «на кончике пера» попытались еще двое: молодой английский математик, недавний выпускник Кембриджского университета Джон Коуч Адамс (1819–1892) и уже известный в ту пору французский теоретик Урбен Жан Жозеф Леверье (1811–1877). Адамс завершил свое исследование раньше, чем Леверье. Результаты вычислений он изложил в короткой записке, которую 21 октября 1845 г. передал через привратника Королевскому астроному (т. е. директору Гринвичской обсерватории) Джорджу Эри. Позже выяснилось, что предсказанное Адамсом положение неизвестной планеты было довольно точным. Но осенью 1845 г. английские астрономы не откликнулись на призыв молодого математика искать новую планету на указанной им орбите. Долгие полтора века этот упущенный шанс историки списывали на косность академической науки в викторианскую эпоху. Однако в самом конце XX в. случайно обнаружились документы, разъяснившие сдержанное отношение Эри и его коллег к предсказанию Адамса.
Любопытно, что эти документы вместе с другими бесценными для истории науки бумагами были с неизвестной целью украдены из библиотеки Королевской Гринвичской обсерватории одним довольно известным астрономом. 30 лет они считались утерянными и лишь после смерти этого странного человека были найдены в его вещах. Среди документов нашлась и та самая записка Адамса, долгое время считавшаяся главным доказательством того, что он первым предсказал существование и вычислил положение Нептуна. С точки зрения профессионалов она выглядит неубедительно: в ней есть результаты вычислений, но нет никаких деталей. Мог ли маститый ученый, директор крупнейшей обсерватории, Джордж Эри отменить все плановые работы и организовать поиски неизвестной планеты на основании легкомысленной записки неизвестного молодого человека? Английская погода не балует астрономов чистым небом, поэтому каждая наблюдательная ночь высоко ценится учеными и не может быть потрачена на пустяки. Эри решил сначала выяснить обоснованность предсказания и в весьма вежливом письме попросил Адамса уточнить некоторые детали его расчетов. Ответа от молодого ученого не последовало.
Рис. 4.12. Урбен Леверье.
Из документа, обнаруженного в 2004 г. в бумагах семейства Адамсов, стало известно, что Джон Адамс начал писать письмо к Эри, но так и не отослал его. Позже он ссылался на свою медлительность и нелюбовь писать письма. Но истинная причина, похоже, была иная: в расчетах имелись некоторые натяжки и темные места. К тому же Адамс не довел расчеты до конца (как это сделал позже более опытный Леверье): он вычислил параметры орбиты предполагаемой планеты, но не указал «теоретический квадрат» неба, на котором ее следует искать. Чтобы наблюдатель смог использовать эти данные для наведения телескопа, нужно было перевести средние орбитальные элементы в фактические положения планеты на небе. Не выполнив эту тривиальную, но все же трудоемкую при отсутствии вычислительных приборов работу, Адамс сделал свой прогноз еще менее привлекательным.
Рис. 4.13. Сближение Урана с Нептуном в начале XIX в. усилило их взаимное влияние и способствовало теоретическому открытию Нептуна.
Все это ясно доказывает, что работа Адамса была поверхностной, поэтому она и не смогла отвлечь английских астрономов-наблюдате-лей от важных текущих дел и не в состоянии была убедить их начать немедленный поиск планеты. Тем не менее английский астроном, сотрудник Кембриджского университета Джеймс Челлис вдохновился расчетами Адамса и предпринял поиск планеты; он опоздал с ее открытием лишь на несколько дней[1]. Спустя год после Адамса свои расчеты закончил маститый Леверье. Его работа, опубликованная 1 июня 1846 г. в журнале Французской академии наук, стала первым полным исследованием на эту тему. Леверье вычислил, где именно на небе должна располагаться неизвестная трансурановая планета, и сообщил об этом своим немецким коллегам, имевшим в те годы лучшие карты звездного неба. А надо заметить, что в таком деле, как охота за планетами, хорошие карты неба имеют большое значение. Равнинная Европа – далеко не лучшее место для астрономических наблюдений, особенно если телескоп располагается в городе, что было вполне обычным для XIX в. При плохом качестве изображений астроному очень сложно отличить крохотный диск далекой планеты от изображения звезды, размытого воздушными потоками. Не имея хороших карт звездного неба, астроном вынужден искать планету по ее медленному перемещению на фоне далеких светил.
Рис. 4.14. Вверху: часть звездной карты, использованной Галле и Д’Арре при поиске Нептуна. Внизу: та же карта, с отмеченными положениями Нептуна, предсказанным Леверье (крест) и действительно обнаруженным (стрелка).
А для этого он каждую ночь должен зарисовывать (фотография в те годы еще не была изобретена) взаимное положение многих сотен звезд в надежде, что через какое-то время ему удастся заметить перемещение одной из них. Если же в распоряжении исследователя имеются точные карты звездного неба, то ему достаточно один раз «прочесать» предполагаемую зону поиска, чтобы обнаружить на ней «лишнюю звезду» – неизвестную планету.
У немецких наблюдателей неба такие карты были, поэтому они сразу же взялись за дело. В ночь на 24 сентября 1846 г. ассистент Берлинской обсерватории Иоганн Готфрид Галле (1812–1910) и помогавший ему студент-астроном Генрих Луи Д’Арре (1822–1875), не затратив и получаса на поиски, обнаружили неизвестное светило, причем всего в одном градусе от расчетной точки. «Этой звезды нет на карте!», – воскликнул Д’Арре, и его слова услышал весь астрономический мир. Но это было лишь преддверием триумфа. Отметив на карте положение маленького голубого пятнышка, астрономы занялись другими делами, а под утро отправились спать. Когда на следующую ночь телескоп был направлен на тот же объект, оказалось, что он немного переместился на фоне звезд. Галле сразу же написал Леверье: «Планета, которую вы предсказали, действительно существует!»
Рис. 4.15. Телескоп-рефрактор работы Фраунгофера (1820 г.), с которым Галле и Д’Арре открыли Нептун.
Это событие стало триумфом небесной механики. Новую планету Леверье назвал именем Нептуна, древнеримского бога морей, что вполне подходит для царства мрака и холода, отстоящего от Солнца в 30 раз дальше Земли.
Открытие теоретически предсказанной планеты всколыхнуло весь просвещенный мир. Но ученые были особенно рады тому, что и на этот раз законы Ньютона устояли.
Что же касается исторического спора о том, на кончике чьего именно пера был открыт Нептун, то сегодня эта честь по праву должна быть отдана французу Леверье. Хотя прогноз Адамса был лишь ненамного менее точным (его теоретическая точка оказалась в трех градусах от истинного положения планеты), все же именно Леверье довел работу до убедительного результата. Впрочем, англичанин Джон Адамс тоже занял свое почетное место в науке, проделав впоследствии множество полезных исследований по астрономии и математике.
Проходят годы, но историю с теоретическим открытием Нептуна до сих пор часто вспоминают при обсуждении методов современной науки и ее прогностических возможностей. Например, рассказывая об успехах физиков в предсказании и открытии новых элементарных частиц, профессор МГУ Б. А. Арбузов написал в «Соросовском образовательном журнале» (1996, № 9): «Развитие науки происходит за счет повседневной, кропотливой работы, которая, на первый взгляд, не имеет ничего общего с романтикой открытий. Одни стараются с максимальной точностью вычислить какой-нибудь эффект, другие – поточнее его измерить. Чаще всего эти два метода дают согласующиеся результаты. Однако тем больший интерес вызывают небольшие, но твердо установленные отклонения вычислений от опыта. Так было в случае с возмущениями движения планеты Уран, что привело в 1846 году к открытию новой планеты Нептун. Так было с малыми поправками к распадам промежуточного бозона Z, изучение которых привело к предсказанию массы t-кварка, блестяще подтвердившемуся в 1995 году».
Думаю, так будет еще не раз. На этом держится авторитет современной науки. Такие события, как предсказание и открытие новых планет или новых субатомных частиц, демонстрируют мощь теоретической физики и ее непременное требование того, чтобы эксперимент и наблюдение в точности согласовывались с теорией, причем всегда, а не от случая к случаю.
<<< Назад Фаэтон, или Планета Ольберса |
Вперед >>> Плутон – наследие Ловелла |
- Уран – находка Гершеля
- «Закон» Тициуса – Боде
- Фаэтон, или Планета Ольберса
- Нептун, открытый «на кончике пера»
- Плутон – наследие Ловелла
- Кентавры, троянцы и пояс Койпера
- Вулкан – возмутитель Меркурия
- Меркурий и Эйнштейн
- Ищем Вулкан!
- Вулканоиды – родственники Вулкана
- Жизнь и идеи инженера Ярковского
- Эффект Ярковского в действии
- В стратосферу за вулканоидами