Книга: Небесные сполохи и земные заботы
4. Точки опоры
<<< Назад 3. Полярная звезда и маленькие упрямые стрелки |
Вперед >>> 5. Философская загадка космофизики, или можете сами побыть космофизиком |
4. Точки опоры
О, дайте точку мне опоры…
Майским днем 1961 года огромная толпа молодежи собралась на площади перед зданием физического факультета Московского государственного университета. Задние ряды ее теснились где–то у подножия памятника М. В. Ломоносову, основателю университета. Передние — прибились к нижним ступеням широкой лестницы физфака, поднимались по сторонам ее, как бы двумя теплыми ладонями охватывая небольшую площадку, на которой с микрофонами в руках стояли Нильс Бор и Лев Давидович Ландау. Сзади них толпились студенты и аспиранты в белых «античных» одеждах из простыней, поодаль на стульях сидели разного рода замечательные люди, приглашенные на праздник. Физфаковцы второй раз отмечали придуманный ими день физики — «день Архимеда». (Тогда еще не был введен профессиональный праздник ученых — День науки). За три года до этого, в 1958 году, комсомольская конференция физфака постановила: считать днем рождения Архимеда, а следовательно, и физики, 7 мая 287 года до нашей эры.
Мне повезло: я стояла прямо перед лестницей, откуда все было прекрасно видно. Живой классик казался мне, тогда студентке физфака, чем–то нереальным. Мы тут все — из настоящего, он же словно вернулся к нам на время из вечности. По масштабам нашей, еще коротенькой, жизни было трудно вообразить, что стоящий перед нами человек — подумать только, в 1912 году! — был гостем в лаборатории знаменитого Э. Резерфорда. Там к этому времени уже сложилось представление об атоме как о подобии Солнечной системы: массивное ядро в центре, вокруг него вертятся по своим орбитам «планеты» — электроны. Бор начинает работать над этой моделью, работает долгие годы, но все дальше уходит от нее. Признанным ученым выводы его кажутся дикими, природа открывается ему с неожиданной, квантовой стороны.
Нильс Бор был очень стар. Он говорил медленно, с хрипотцой, не сразу находя слова. «Отца» атомной физики, видимо, растрогал наш праздник, на глазах его были слезы. Энергичный и подтянутый Л. Д. Ландау переводил за ним: «…Я никогда в жизни не видел столько физиков сразу».
В эти годы наша наука была в моде. Вся страна любовалась изящными физиками — героями фильма М. Ромма «Девять дней одного года». В газетах тянулись бесконечные дискуссии о физиках и лириках. «Что–то физики в почете, что–то лирики в загоне», — отмечали поэты.
В целом на физфаке этой «выделенности» физиков или противопоставленности их кому–то не чувствовалось. Жизнь текла буднично, напряженно и очень интересно. «Лирики» в ней было с избытком. В 1960 году родилась на физфаке комическая «самодельная» опера «Архимед», написанная к физфаковскому празднику. Ее видел и оценил Нильс Бор. «Это остроумно, это замечательно, это что–то необыкновенное, — сказал он после просмотра. — Если студенты работают так же, как веселятся, то я спокоен за завтрашнюю физику». Опера так увлекательно и весело боролась с недостатками, вплоть до таких, каких не было, нет, не будет и быть не может, но с которыми все равно надо бороться (так было объявлено в прологе), что ее охотно смотрели не только физики. «Трех «Аид» за одного «Архимеда», — шутя сказал поэт К. М. Симонов, посмотрев нашу оперу. К 1980 году «Архимед» выдержал больше трехсот представлений в самых различных аудиториях.
Да, впрочем, отзвуки физфаковской лирики тех времен знакомы всем. Я слышала, как диктор, ведущий концерт по заявкам радиослушателей, объявил: «Популярный современный романс «Под музыку Вивальди» — и назвал имена Татьяны и Сергея Никитиных, физфаковцев того же поколения, работающих и сейчас по своей специальности. Часто исполняется по радио и телевидению «Песня о маленьком трубаче». Авторы ее — физики Сергей Крылов и Сергей Никитин.
Если чем и выделялись студенты–физики той поры, то активностью. Студенческие строительные отряды, например, придуманы ими.
Поехали мы во время летних каникул 1959 года, как традиционно ездили перед этим студенты, «на целину» — на сельскохозяйственные работы. Но с легкой руки секретаря комитета комсомола физфака Сергея Литвиненко часть из нас, работавших в Булаевском совхозе на севере Казахстана, стала первым в истории студенческим строительным отрядом (наши последователи почему–то грозно именуются «бойцами» ССО). Мы строили птичник из самана, работали в несколько смен, и те первые в моей жизни рабочие рассветы, когда земля кажется темной и плоской, а небо над ней — светлым куполом с яркими узорами облаков, запомнились на всю жизнь.
Прямо перед встречей с Нильсом Бором мы, тогдашние третьекурсники физфака, только что пережили распределение по кафедрам. Популярны были кафедры, где изучали фундаментальные вопросы теоретической физики. Шли студенты в «лазерщики» к Рэму — так называли на физфаке будущего ректора университета Р. В. Хохлова. Он совершенно четко ощущался в то время как центр, вокруг которого сплачиваются люди. «Табель о рангах» не отражала пока истинного значения Хохлова: защита докторской диссертации ему только предстояла, руководителем служебных подразделений он не был, и группа энтузиастов вокруг него лишь задним числом стала называться «лабораторией нелинейной оптики».
Однако самый большой конкурс был среди желающих изучать атомную физику. Традиционный предмет ее — вещество в том состоянии, когда оно светится. Оно может многое тогда рассказать о себе на языке спектров составляющих его атомов. Эти спектры выглядят по–разному в зависимости от условий, в которых находятся атомы. По спектрам можно узнать, соединены они в молекулу или в молекулярный ион или остаются свободными, можно судить о температуре вещества, об электрическом или магнитном поле, в которое погружено вещество. Атом может бомбардироваться энергичными частицами (частицами этого же вещества или их посторонним потоком), получать от них энергию для последующего высвечивания кванта света, может терять электро–ны под их ударами — обо всем этом тоже можно узнать, разглядывая спектр. Вещество как бы само включает многоцветие сигнальных лампочек, сообщающих об его состоянии. Умеешь в этом многоцветий разбираться — в твоих руках ценнейшая информация.
Когда–то в затемненном школьном кабинете нам показали различные режимы, в которых может работать газоразрядная трубка. Простое устройство — два электрода, разреженный газ между ними. Электроны, вырываясь из катода, сталкиваются с частицами газа и заставляют их светиться. Маленькое полярное сияние здесь, в школе — и свободные электроны, эти загадочные неделимые порции электричества. Нежно светящаяся трубка с газовым разрядом оказалась причастной и к тайне космической бездны и к бездне тайн микромира. На физфаке я пришла на кафедру атомной физики.
Но теперь атомщики занимались еще и другим. Их особенно стало интересовать газообразное вещество со значительной примесью свободных заряженных частиц или вовсе состоящее только из них — плазма. Плазму можно считать четвертым состоянием вещества, потому что при нагревании можно последовательно переводить вещество из твердого состояния в жидкое, в газообразное и потом — в плазму. Если удастся нагреть вещество еще больше — до очень высоких температур, то быстро–движущиеся тяжелые положительно заряженные ядра смогут преодолеть силы электрического отталкивания и подойти друг к другу настолько близко, что попадут под влияние других, ядерных, сил, действующих на малом расстоянии. Ядра сольются, произойдет термоядерная реакция («термо» — потому что нужна высокая температура). Такие реакции должны идти в недрах Солнца и идут, к печали человечества, на Земле — при взрыве водородной бомбы.
С управляемой термоядерной реакцией связаны надежды людей на получение неисчерпаемого источника энергии. Еще с помощью плазмы можно прямо, без всяких турбин, превращать тепловую энергию в электрическую. При этом сокращаются потери энергии: коэффициент полезного действия обычных тепловых электростанций сравнительно мал.
Пламя, даже от спички, — плазма. Таинственная шаровая молния — тоже. Но в общем на поверхности Земли в естественных, не лабораторных условиях плазмы немного.
Другое дело — в космосе. Во Вселенной 99 процентов вещества пребывает в состоянии плазмы.
В начале 60?х годов уже работали на орбитах первые космические корабли. По инициативе известного специалиста по космическим лучам С. Н. Вернова, впоследствии академика, на спутниках были подняты счетчики заряженных частиц, применяемые в ядерной физике. Проблемы всевозможных земных, лабораторных и космических плазм сплелись вместе. Время открывало перед молодыми физиками–атомщиками интереснейшие перспективы.
Первые же прямые наблюдения в космосе показали, что люди неверно представляли себе обстановку в нем. Считалось, что количество частиц должно равномерно убывать по мере удаления от Земли. Однако на расстояниях порядка тысячи километров от поверхности планеты и дальше их оказалось намного больше, чем ожидалось. Области максимальной плотности получили название радиационных поясов Земли (слово «радиация» в данном случае означает присутствие энергичных частиц; когда говорят «радиоактивное облучение», то имеют в виду и облучение потоком таких частиц).
Ясно было, что сила земного притяжения не может удерживать на таких расстояниях от Земли столько частиц.
Что же мешало этим частицам разлететься?
Современная физика, ищущая подходы к термоядерному синтезу, могла дать ответ раньше, чем прозвучал вопрос: эти заряженные частицы захвачены магнитным полем Земли. В самом деле, для того чтобы началась термоядерная реакция — слияние двух ядер тяжелого водорода в одно ядро гелия, требуется удержать ядра водорода в небольшой области пространства в течение достаточно длительного времени: двигаясь внутри этой области, они в конце концов встретятся и сольются. Удерживать ядра помогает магнитное поле, которое затрудняет, как известно, передвижение заряженных частил, в поперечном к нему направлении на значительные расстояния: попав в такое поле, частица как бы блуждает в нем и не может выйти или выходит, но спустя какое–то время. Длительность этих блужданий зависит от того, как поле распределено в пространстве — говорят, от «конфигурации магнитного поля» и еще от того, в какую его точку и с какой скоростью была запущена частица.
Еще в начале века, задолго до термоядерщиков, эти вопросы изучали астрофизики. Их интересовало, как ведут себя заряженные частицы космической плазмы. Движение каждой такой частицы представляет собой микроскопический электрический ток. Поэтому в космосе существуют магнитные поля и, кроме того, небесные тела, имеющие собственное магнитное поле, оказывают влияние на движение космической плазмы. К середине нашего века разработки на эту тему могли уже считаться самостоятельной наукой. Она и послужила фундаментом для начавшихся потом исследований чисто земных проблем — термоядерного синтеза и прямого преобразования энергии. В развитие этих направлений были вложены крупные средства, и в них стало работать большое число ученых. Теперь исследователи космоса, в свою очередь, могли пользоваться результатами земных разработок по интересующей их теме. Это было тем более кстати, что появились спутники и космические корабли и изучение космоса резко двинулось вперед.
Из астрофизики выделилась молодая наука космофизика, изучающая космос на основе прямых измерений в нем.
Ко времени открытия радиационных поясов Земли уже было хорошо известно, что магнитные поля некоторых конфигураций могут долгое время удерживать определенным образом запущенные в них частицы. Термоядерщикам, которым нужно, чтобы частицы не разлетались, интересно именно это свойство полей, и они называют их ловушками. Это название так укоренилось, что им пользуются и космофизики, хотя для них оно не совсем удачно. Космофизики изучают, как вообще взаимодействуют заряженные частицы и магнитные поля, и им следовало бы называть поля таких конфигураций как–нибудь иначе, «лабиринтами», что ли, подчеркивая, что частице не только трудно покинуть такое поле, но и войти в него снаружи, хотя некоторые частицы тем не менее входят и выходят (как уже говорилось, все дело в том, где находилась частица в начальный момент и какая У нее тогда была скорость).
Магнитное поле в области радиационных поясов Земли близко к дипольному, оно представляет собой именно такую ловушку. Как и всякая ловушка, слишком энергичную для себя частицу дипольное поле Земли удержать не сможет: она пройдет через него по какой–то плавной кривой. Пути же захваченных полем частиц выглядят совсем иначе. Это спирали со множеством витков, навитые на силовые линии магнитного поля (рис. 2). Движение каждой отдельно взятой частицы, захваченной дипольным магнитным полем Земли, идет по стандартному образцу. Если понаблюдать за частицей в течение некоторого довольно короткого времени, то можно заметить, что частица описала почти окружность — это один виток спирали. Проследив за ее движением дольше, мы увидим, что этот виток «качается» вдоль магнитной силовой линии, уходя на определенное расстояние от плоскости экватора, а затем возвращаясь к ней. Через несколько часов наблюдений станет ясно, что вся спираль постепенно поворачивается вокруг Земли.
Рис. 2. Движение заряженной частицы, захваченной дипольным магнитным полем
Если такая частица сталкивается с другой или попадает под влияние «посторонних» полей — электрических и магнитных, характер ее движения изменяется. Теперь она может оказаться на силовой линии, проходящей на другом расстоянии от Земли, или увеличить размах своих качаний вдоль силовой линии. Если качания становятся очень уж большими, частица может подойти слишком близко к Земле, войти в плотные слои атмосферы и потеряться в них. Поэтому в космической ловушке может находиться только та частица, которая в своих качаниях не слишком далеко уходит от плоскости экватора.
Представим себе теперь, что в ловушке находится не одна, а много частиц. Сталкиваясь, они заставляют друг друга уходить в атмосферу (специалист скажет: частицы высыпаются в атмосферу). В конце концов столкновения станут редкими, и оставшиеся частицы уже можно будет рассматривать как отдельные, независимые друг от друга. Они все окажутся сосредоточенными вблизи плоскости экватора и как бы поясом охватят Землю. Так была понята природа радиационных поясов — совокупности заряженных частиц, по существу не связанных друг с другом.
В 1959 году космофизик Т. Голд назвал область, в которой кружатся эти частицы, магнитосферой.
Прошло всего несколько лет, и выяснилось, что все не так просто. Оказалось, что, кроме сравнительно небольшого количества частиц, составляющих радиационные пояса, в космосе есть еще множество частиц меньших энергий, радиационные пояса как бы погружены в пространство, заполненное ими. Эти малоэнергичные частицы уже нельзя было считать независящими друг от друга. Больше того, оказалось, что все процессы в ближнем космосе так или иначе связаны с этими частицами. Поведение их выглядело сложным и непонятным. Это они, вторгаясь в верхние слои атмосферы, вызывают самые эффектные формы полярных сияний: и резкие, четкие дуги, и цветной мятущийся «пожар небес». Частицы же радиационных поясов отвечают лишь за невзрачное свечение, которое иногда появляется вслед за особенно разбушевавшимися сияниями с экваториальной их стороны. На эти относительно малоэнергичные частицы — плазму околоземного пространства — постепенно сместилось основное внимание исследователей.
Оказалось еще, что наша планета все время находится в потоке плазмы, непрерывно идущем от Солнца, — в потоке солнечного ветра. Солнечный ветер — один из красивейших терминов науки. Не удивительно, что он нравится журналистам: они дружно используют его в названиях статей, очерков, телепередач и других материалов о космофизиках. Существование ветра было предсказано теоретиками. Об эпизодических потоках солнечной плазмы писали известный английский физик С. Чепмен и его сотрудник В. Ферраро в 1931–1933 годах, на постоянное присутствие ветра указали советский геофизик Е. Пономарев и американский астрофизик Е. Паркер в 1957–1958 годах.
Космические корабли выявили реальное распределение магнитного поля в околоземном пространстве. Оказалось, что, начиная с расстояний около семи земных радиусов от центра планеты, реальное магнитное поле сильно отличается от дипольного поля, создаваемого токами в глубине нашей Земли. Это говорит о существовании в ближнем космосе других токов, искажающих магнитное поле внутренних токов планеты. Это понятно: ведь ближний космос заполнен плазмой — веществом со свободными носителями электрических зарядов, в плазме могут течь токи (причем вовсе не обязательно в направлении электрического поля).
Магнитосфера (в современном понимании это область, занятая магнитным полем, силовые линии которого уходят под поверхность Земли) оказалась вовсе не «сферой». Скорее, она похожа на комету с хвостом (рис. 3). Хвост магнитосферы — это тоже термин науки. Хвост тянется очень далеко в ночную, противосолнечную, сторону Земли; он уходит на тысячи земных радиусов — это миллионы километров (для сравнения: расстояние до Луны — 384000 километров). Со стороны Солнца граница магнитосферы — магнитопауза — обычно отстоит от центра Земли на расстояние 10 земных радиусов (то есть на 65000 километров), с «боков» — до 16 радиусов (106000 километров).
Рис. 3. Сечение магнитосферы плоскостью, проходящей через магнитные полюса Земли и центр Солнца (изображены магнитные силовые линии)
Ориентироваться в строении ближнего космоса довольно просто. Надо только помнить основной принцип: передвижение частиц на значительное расстояние поперек магнитного поля затруднено.
Что при этом получается?
По отношению к солнечному ветру магнитное поле, созданное токами внутри планеты, представляет собой препятствие. Солнечный ветер обтекает его. Поэтому магнитосфера занимает полость, «вырезанную» в потоке солнечной плазмы. Действительно, плотность частиц, наблюдаемая в этой полости, значительно меньше, чем в солнечном ветре. Естественное исключение составляет сама Земля и ее ближайшие окрестности, включая так называемую плазмосферу — область плотной и холодной плазмы, прилегающую непосредственно к нейтральной атмосфере Земли (в районе средних и низких широт на поверхности планеты).
Нас не удивит, конечно, что Земля расположена в головной части этой полости: при обтекании препятствия быстрым потоком за препятствием всегда остается более или менее вытянутое разреженное (по сравнению с обтекающим потоком) пространство.
Очевидно, наибольшему искажению должны подвергнуться периферийные области дипольного магнитного поля Земли, другими словами, те его линии, которые уходят на большие расстояния от планеты. Такие линии пронизывают поверхность Земли вблизи ее магнитных полюсов. Они–то и заполняют хвост реальной магнитосферы.
Когда–то промелькнул в печати такой рисунок: двое научных сотрудников стоят возле лабораторного стола, на котором лежит шарик со щеточкой волос «на макушке». Тот сотрудник, что повеселее, говорит другому, озабоченному и лысому:
— Скажи, ну кому нужен бильярдный шар с растущими на нем волосами?
Нам сейчас нужен такой шар: на нем легко показать, как устроена наша магнитосфера. Пусть только волосы у шара растут двумя чубами, длинными, как у запорожцев, по обоим концам одного диаметра. Можно было бы с силой метнуть такой шарик, чтобы встречный поток воздуха сдул чубы назад и свел концы их вместе. Летящий волосатый шарик со стороны очень похож на магнитосферу, можно сказать, это ее объемная модель. Встречный поток для реальной магнитосферы — солнечный ветер. Шар представляет ту ее область, где магнитное поле еще не сильно отличается от дипольного. Здесь находятся радиационные пояса Земли, погруженные в разреженную плазму. Волосы чубов — магнитные силовые линии полярных областей Земли. Две пряди — одна из силовых линий, идущих от Земли, из ее Южного полушария, другая — из линий, направленных к Земле и входящих в нее в полярном районе Северного полушария, — составляют хвост реальной магнитосферы. В плоскости, проходящей через магнитные полюса Земли, получается та фигура, которую мы видели на рис. 3.
Обратим теперь внимание на область, где проходит поверхность раздела между внутренними дипольными магнитными силовыми линиями, не искаженными потоком солнечного ветра, и внешними, уходящими в хвост. Можно ожидать, что здесь должны наблюдаться какие–то особенные явления, которых нет в других частях магнитосферы. Точки, в которых силовые линии, образующие эту поверхность, пронизывают Землю как в Северном, так и в Южном полушарии, ложатся кольцом, охватывающим магнитный полюс. Вдоль этих колец можно тоже ожидать каких–то своеобразных явлений. И действительно, именно здесь горят полярные сияния! Каждое кольцо — не что иное, как авроральный овал.
Теперь понятно, какие черты ближнего космоса отражает само существование целостного аврорального овала. Он может быть растянутым, далеко отходить от магнитного полюса, может быть, наоборот, сжатым. Но он постоянно присутствует на полярном небе, потому что Земля постоянно обдувается потоком солнечной плазмы. Ведь если бы не было солнечного ветра, не было бы никакого аврорального овала и, возможно, сияний вообще. Солнечный ветер — это постоянно расширяющиеся («испаряющиеся») наружные слои атмосферы Солнца. Поэтому можно сказать: сияниями мы обязаны тому, что живем прямо в Солнце, да еще тому, что планета наша имеет собственное магнитное поле, «распирающее» солнечную плазму.
Мы уже говорили об авроральном овале как об испытательной таблице на экране естественного телевизора (так и хочется сказать: марки «Магнитосфера») которым обладает наша планета. В этом качестве используют овал и специалисты: любое обсуждение конкретного явления в околоземном пространстве начинается с вопроса, где в это время находился авроральный овал, другими словами, был ли он растянут или сжат. Вообще в космофизике авроральный овал — это та печка, от которой всегда танцуют. Да и понятно: ведь он представляет собой отпечаток структуры магнитосферы, который позволяет просто, лишь по одним наблюдениям с Земли, определять, какая часть околоземного пространства находится под непосредственным влиянием плазмы Солнца — солнечного ветра.
Отметим в заключение еще одно свойство околоземного пространства. Солнечный ветер искажает собственное магнитное поле Земли на довольно большом расстоянии от нее. Поэтому если вести магнитные наблюдения на спутнике, летящем на высоте, скажем, 1000 километров от поверхности Земли, то и не заметишь разницу внутренних и внешних (хвостовых) силовых линий: здесь недалеко от Земли, они все отходят от нее как дипольные, но на соответствующем расстоянии в космосе внешние линии резко меняют вид, отклоняясь в хвост (см. рис. 1 и 3). Особенно выразительно это выглядит со стороны Солнца: высокоширотные силовые линии, тянущиеся от Земли, сначала направляются, как и дипольные, в сторону противоположного магнитного полюса, но затем резко отклоняются в сторону «своего» полюса, проходят над ним и уходят далеко на ночную сторону (см. рис. 3). Граница раздела между этими линиями и «обыкновенными», как у диполя, на поверхности Земли соответствует 80° магнитной широты. С ночной стороны поверхность раздела линий, похожих на дипольные, и хвостовых силовых линий, очевидно, должна быть менее резкой: это подветренная сторона магнитосферы и здесь переход от силовых линий, похожих на дипольные, к вытянутым, хвостовым происходит постепенно. Поэтому–то авроральный овал и утолщен с ночной стороны.
<<< Назад 3. Полярная звезда и маленькие упрямые стрелки |
Вперед >>> 5. Философская загадка космофизики, или можете сами побыть космофизиком |
- Об авторе
- Предисловие
- 1. Пожар небес
- 2. Истоки и источники
- 3. Полярная звезда и маленькие упрямые стрелки
- 4. Точки опоры
- 5. Философская загадка космофизики, или можете сами побыть космофизиком
- 6. Там, где исчезает голубой цвет неба
- 7. Говорит и показывает космос
- 8. Несколько фунтов вещества
- 9. Удачный отпуск и его последствия
- 10. Факты
- 11. Подробности
- 12. Долгосрочный прогноз
- 13. Откуда берутся вихри?
- 14. А нам все равно?
- 15. Редкости и чудеса
- 16. Включите нам полярное сияние!
- Планета Земля (Вместо послесловия)
- Литература
- Содержание книги
- Популярные страницы
- 15. Внешний вид червоточины в «Интерстеллар»
- Небесные сполохи и земные заботы
- Предисловие
- Секретные поля
- Гены и развитие организма
- Часть 5 Убийство или самоубийство? Трудное рождение индивидуума
- ПИГМЕНТОГЕНЕЗ И ГЕНЕТИКА ОКРАСОВ
- 17. Периодический закон Д. И. Менделеева.
- Благодарности
- Зачем аисты выкидывают своих детей
- Картофельный клей
- Далеко ли Солнце от Земли?