Книга: Небесные сполохи и земные заботы

Планета Земля (Вместо послесловия)

<<< Назад
Вперед >>>

Планета Земля (Вместо послесловия)

Наша голубая планета из космоса имеет

удивительно красивый вид. Она прекрасна,

но и поразительно мала…

И вдруг понимаешь, что сама Земля ?

это космический корабль, который несется

в космосе. Он имеет ограниченные ресурсы

и экипаж — человечество,

которое должно беречь свою планету,

ее ресурсы, беречь себя.

Космонавт Севастьянов В. И.

До сих пор речь шла о том, где кончается космический корабль — Земля и начинается космос, о связи жизни «на борту» с окружающей средой — ближним космосом, о процессах в этой среде. В заключение надо сказать, хотя бы очень коротко, о тех проблемах, острота которых, по общему признанию ученых, нарастает.

Людей на Земле становится все больше, потребление природных материалов растет, ресурсы давно перестали казаться безграничными. А люди своим отношением к планете часто напоминают злую старуху из сказки, которой хотелось, чтобы золотая рыбка, давшая ей все, была у нее еще и на посылках.

Под влиянием человека изменяется атмосфера — оболочка, закрывающая нас от космического холода и смертоносной радиации. Как никогда остро стоит сейчас вопрос о границах дозволенного в этих изменениях. Обсуждать этот вопрос легко: материалов накопилось много, дать даже частный ответ на него очень трудно. Например, в холодильных установках и аэрозольных баллонах широко используют особые вещества — так называемые фреоны. Сами по себе они безвредны для человека, но в принципе они могут стать причиной гибели всего живого на Земле. Дело в том, что при всякой утечке фреоны всплывают, поднимаются до стратосферы и портят там слой озона — естественную нашу защиту от ультрафиолетового излучения Солнца. Специалисты по атмосфере обеспокоены постоянным увеличением фреонной примеси в разреженных слоях воздуха. Однако Международный институт холода оценивает положение так: колебания естественного уровня озона в атмосфере больше, чем те изменения, что связывают с фреонами; при замене же фреонов в холодильниках на что–нибудь другое возникает опасность взрывов, а это еще страшнее для людей, чем частичное разрушение озонного слоя. Каждая сторона кажется по–своему правой, проблема же остается.

И все–таки с фреоном в атмосфере еще сравнительно просто: он весь, как говорят, антропогенного происхождения, то есть весь выпущен человеком. Если остановиться то, по крайней мере, можно быть уверенным, что в атмосфере его больше не станет.

Хуже с углекислым газом СO2, который совершает сложный кругооборот: идет взаимообмен этим газом между Мировым океаном и атмосферой, из атмосферы его забирают зеленые растения, от них — животные; дыхание растений и животных, а также разложение их останков возвращает его атмосфере. Часть этого газа выбывает из кругооборота ввиду того, что зеленые растения служат исходным материалом для образования ископаемых — торфа, угля и нефти. Все звенья этой цепи действуют как единый сложный, хорошо отлаженный механизм, человечество обязано ему своим существованием на планете.

Современный человек вмешивается в работу этого механизма весьма решительно: обеспечивая себя энергией, сжигает горючие полезные ископаемые растительного происхождения (то есть снова выпускает в атмосферу выбывший из кругооборота углекислый газ), сводит леса, загрязняет океан, с лихостью берется за «преобразование природы». И вмешательство это — пока в сущности слепое, потому что по–настоящему исследовать этот кругооборот люди еще не успели. Общей тревогой нашего времени должно быть резкое несоответствие между очень большими возможностями непреднамеренного или преднамеренного воздействия на природу и еще крайне ограниченными способностями прогнозировать результаты такого воздействия.

Специалисты по атмосфере сейчас много работают, чтобы выявить климатические изменения, которые могут последовать за увеличением содержания СO2 в воздухе. По отношению к поверхности Земли и приземному воздушному слою атмосферный углекислый газ действует как стекло в теплице: благодаря его присутствию повышается температура нижнего слоя атмосферы — возникает так называемый «парниковый эффект». В 1939 году Дж. Каллендер высказал предположение, что причина потепления на Земле может быть антропогенной — за счет повышения концентрации СO2 в атмосфере при сжигании ископаемого топлива. Долгое время это предположение не вызывало интереса, поскольку считалось, что почти весь углекислый газ, выбрасываемый с промышленными отходами, поглощается водами океана и тем самым выводится из атмосферы. Наблюдательных же данных было слишком мало, чтобы составить представление об общем количестве СO2 в земной атмосфере. Но первые прямые измерения, проведенные с достаточной точностью, которые начал в 1958 году в США Килинг, позволили экспериментально подтвердить гипотезу о том, что «обогащение» земной атмосферы двуокисью углерода — это прямое следствие хозяйственной деятельности человека. Сжигание ископаемого топлива и расчистка земель привели за последние 110 лет к тому, что СO2 в атмосфере стало больше на 13 процентов. Сформировалось мнение, согласно которому загрязнение земной атмосферы углекислым газом может вызвать серьезные изменения климата.

Двуокись углерода не является единственной «парниковой молекулой» в атмосфере. Нельзя пренебрегать присутствием других малых компонент атмосферного воздуха — водой, окисью азота, метаном, озоном, фтористым углеродом, теми же фреонами. Хотя влияние увеличенного (и увеличивающегося) содержания окиси азота, метана или озона, взятых порознь, и невелико, но совместный эффект составляет примерно 50 процентов ртепляющего воздействия, обусловленного концентрацией СO2.

Многое надо учитывать и рассматривать. И тщательность изучения требуется очень большая: изменение средней планетарной температуры более, чем на 0,1 °C уже существенно, если продержится долгое время; с изменением же этой температуры на 1–2 °C связывают крупнейшие климатические перестройки. К сожалению, для современной науки такие требования пока непосильны. Нет удовлетворительной теории климата, а значит, нет полного понимания, нельзя построить достаточно достоверного прогноза — все это мы уже обсуждали в главах 9, 12, 13. Как пишут в своей книге «История климата» А. С. Монин и Ю. А. Шишков, «в настоящее время климатологи лишь спорят друг с другом, например, о том, чем было вызвано климатическое потепление первой половины 20?го столетия; происходит ли в 70?х годах резкое похолодание или наоборот, начинается резкое потепление; что приводит к увеличению повторяемости засух — климатические потепления или, наоборот, климатические похолодания, и т. д. Это неудивительно, поскольку климатология лишь в середине текущего столетия начала переходить от стадии описания (да и то затрагивавшего главным образом состояния только приземного слоя атмосферы, т. е. сравнительно небольшой части «климатической системы») к стадии объяснения».

Однако сейчас положение стало быстро меняться к лучшему. Арсенал средств наблюдения пополнили океанографические спутники. С борта спутника можно измерить расстояние до воды и затем составить топографическую карту поверхности океана. Такая карта позволяет найти (в определенном приближении) скорость океанских течений. С помощью спутниковых измерений можно построить карту относительной температуры океанских вод. По такой карте тоже можно следить за течениями, можно также выявить циклонические (по холодному ядру) и антициклонические (по теплому ядру) «мезомасштабные» вихри — есть в океане такие аналоги атмосферных циклонов и антициклонов. Со спутника можно следить за шероховатостью поверхности океана, что позволяет судить о величине и направлении ветра над океаном. Нельзя сказать, чтобы данных было с избытком: океан велик характеристики же хотелось бы иметь детальные и разнообразные, но это все–таки грандиознейший шаг вперед по сравнению с недавним временем, когда об изменчивых океанских течениях приходилось судить на основании данных о сносе судов, бутылочной почты (!) и замеров с помощью немногочисленных заякоренных буйковых станций.

Наметился успех в понимании взаимодействия океан — атмосфера. Академику Г. И. Марчуку и его сотрудникам удалось теоретически установить, что аномалии температуры воздуха сильно зависят от процессов, происходящих в некоторых районах Мирового океана, где в атмосферу из океана переходит огромное количество тепла. Эти районы получили название энергетически активных зон океана. Реальное существование этих зон было подтверждено данными глобальных наблюдений теплового баланса, а также замеченными ранее связями между состоянием океана и последующей погодой.

Когда говоришь о физическом изучении погоды и климата, то обязательно приходится отмечать сложность задачи, взаимосвязанность явлений, которые определяют состояние атмосферы (см. главы 9 и 13). Но нельзя ли разбить сложную задачу на какие–то более простые и последовательно решить их? Как «разобрать на части» механизм, обеспечивающий погоду, чтобы по отдельности «прощупать» его основные узлы? В таких случаях физики обычно прибегают к лабораторному моделированию. (Сейчас еще проводят математическое моделирование — «проигрывают» на электронно–вычислительных машинах различные более или менее упрощенные варианты решения интересующей задачи; путем такого моделирования и были, кстати, получены оценки, которые мы использовали при обсуждении эффектов СO2 и фреонов.) Однако построить установку, даже весьма упрощенно моделирующую атмосферу, очень трудно. Плотность «газа» в такой искусственной атмосфере должна нарастать к «поверхности Земли». В настоящей атмосфере нарастание обусловлено силой тяжести, но тяготение пока неподвластно человеку, и в лабораторных условиях манипулировать им мы не можем. Из чего–то надо еще сделать искусственные океаны, обменивающиеся с «атмосферой» влагой, теплом и движением; все это должно вращаться, иначе океанские и воздушные течения окажутся непохожими на реальные (о роли вращения шла речь в гл.13). При этом остается еще не отраженной роль небольших, но коварных примесей, о которых тоже шла речь выше.

Опробовать отдельные узлы в наших представлениях об атмосфере должны помочь космические корабли. Они уже начали поставлять данные об атмосферах других планет. Эти атмосферы можно рассматривать как своеобразные модели земной.

Например, нужно исследователю абстрагироваться от эффектов вращения — он может обратиться к материалам по Венере, которую систематически осваивают наши межпланетные космические станции. Эта планета вращается в 225 раз медленнее, чем Земля. Кроме того, на ней нет морей, осложняющих течение атмосферных процессов. У Венеры поэтому должна быть самая простая «кухня погоды». Эту «кухню» удобно использовать как эталон, с которым сравниваются более сложные случаи.

Если ученого интересует возможность потепления из–за избыточного содержания СO2 в атмосфере, он будет сопоставлять свои материалы и выводы с данными по Венере и Марсу. Углекислый газ содержится в атмосферах обеих планет, но на Марсе атмосферный слой тонкий, парниковый эффект проявляет себя слабо, и Марс остается холодной планетой; на Венере же с ее мощной атмосферой, на 97 процентов состоящей из углекислого газа, температура на поверхности планеты — как полагают, из–за действия парникового эффекта — примерно такая же как, в топке паровозного котла — свыше 400 °C. Этот «ад» на Венере — еще одно предупреждение человечеству по поводу неосмотрительного обращения с углекислым газом на своей планете. Когда речь идет о том, что фреоны в атмосфере способствуют разрушению озонного слоя, сопоставляют атмосферы Земли и Марса. Озонный слой на Марсе имеет клочковатую структуру, хотелось бы выяснить, за какие климатические особенности Марса отвечают «прорехи» в его озонном слое. Известно, что на Марсе есть циклоны и антициклоны. Было бы интересно подробнее проследить за их развитием и движением, которые там не осложнены присутствием морей.

Циклоны, антициклоны… От их внутренней сущности отвлекаются, когда говорят о климате: в климате отражен лишь суммарный итог деятельности загадочных атмосферных вихрей. Что же все–таки представляют собой эти образования — носители погодных аномалий? В последние годы «поддался» изучению замечательный вид волн — солитоны — одиночные волны, сохраняющие свою форму при движении и без изменений проходящих друг сквозь друга.

Недавно советский физик В. И. Петвиашвили установил, что решение солитонного типа есть и у уравнений, описывающих атмосферу. Образование, которое соответствует этому решению, по своим свойствам очень близко антициклону. Выходит, антициклон — солитон? Для существования этих образований важно вращение планеты.

Интересен философский аспект изучения физиками солитонов. Солитон — это волна, волны характерны для среды. Но этот же солитон в некоторых отношениях похож на частицу: он ясно выделяется на фоне породившей его среды, остается «самим собой» после взаимодействия с другим солитоном (что аналогично сохранению частицей своей «индивидуальности» после упругого столкновения с другой частицей). При грубом восприятии солитона (какое было бы у нас, если бы мы лишь фиксировали область пространства, где находится солитон, и не знали бы ни его «внутреннего устройства», ни того, что он представляет собой возмущение среды) мы могли бы принять его за частицу в вакууме. Таким образом, изучая солитоны, мы входим в круг вопросов о самом мироздании. При этом мы можем ощутить, как идет самоорганизация возникшей неоднородности, растет ее упорядоченность (первоначальную однородность вполне можно считать беспорядком, хаосом: ведь чем больше хаос, тем больше он напоминает однородность). Обо всем этом мы уже говорили в главе 13, обсуждая зарождение и развитие атмосферных вихрей. Но такие же явления волнуют сейчас физиков других специализаций, химиков, биологов, математиков, обществоведов. Иногда об этих общих поисках, о заинтересованном обсуждении результатов, которое ведут совместно ученые разных специальностей, говорят как о зарождении новой науки. Определилось ее название — синергетика, от греческих слов «син» — «вместе» и «энергос» — «действующий», «работающий».

Мы видели, с каким старанием и напряжением современная наука ищет решения экологических вопросов. И пусть для многих из них решения пока не найдены, — потребительское отношение к родной планете должно быть преодолено уже сейчас.

В нашей стране еще в 1972 году Верховный Совет определил охрану природы и рациональное использование природных ресурсов как одну из важнейших общегосударственных задач. Государственные капитальные вложения в осуществление эффективных мер по охране природы и рациональному использованию природных ресурсов только за годы десятой пятилетки составили 9281 миллион рублей, а общая сумма затрат на эти цели (включая операционные расходы по лесному хозяйству) — более 26 миллиардов рублей. На реализацию природоохранных мероприятий за один 1983 год направлено 1,9 миллиарда рублей.

Планета у нас у всех одна. Многие экологические проблемы глобальны, и потому их решение возможно только общими усилиями — народов и правительств. Вот почему так настойчиво наша страна добивается здесь взаимопонимания, а главное — предотвращения термоядерной катастрофы, запрета на производство химических, бактериологических и прочих опасных средств ведения войны, запрета на милитаризацию космоса.

Постскриптум. Грозные вихри на русской равнине. На памяти людей старших поколений — страшный московский смерч 1904 года. Этот смерч возник 29 июня 4904 года в системе циклона, шедшего в обычном для Русской платформы направлении на северо–восток. Сначала образовалось громадное кучево–дождевое облако. Его видели в Тульской губернии, откуда оно ушло в Московскую, а затем в Ярославскую.

Облако породило несколько смерчевых воронок. Появление одной из них описал сельский учитель, следивший за приближением громадной грозовой тучи. Он видел все с самого начала. На нижней поверхности тучи небольшие, более светлые облачка как–то странно и быстро хаотически двигались в разные стороны. Постепенно движение становилось спиральным, и вдруг из середины спирали свесилась серая остроконечная воронка. Воронка просуществовала недолго и быстро втянулась обратно в облако. Учитель взглянул на часы. Было 4 часа 35 минут пополудни.

Через несколько минут рядом появилась другая воронка. Она быстро увеличивалась в размерах и отвисала к земле, навстречу ей с земли поднялся столб пыли, становившийся все выше. Еще немного — столб и воронка соединились, и учитель с ужасом понял, что перед ним возникла колонна смерча.

Но смерч двинулся от него. Он шел по направлению движения облака, к северо–востоку. Колонна расширилась кверху, была расплывчатой и постепенно становилась все шире, Вот она дошла до ближайшей деревни, и в воздух взлетела первая изба, за ней другая, третья… Воздух вокруг воронки наполнился обломками строений, ветвями и обрывками деревьев. В нескольких километрах шла другая воронка, также вызывая сплошные разрушения. По–видимому, была и третья — такой же разрушительной силы.

Хотя воронки были расплывчатыми, полосы разрушений имели ясные и резкие границы. Одна из воронок пересекла Москву–реку, на несколько секунд обнажив ее дно, при этом образовалась как бы траншея с водяными стенками. Когда надвигалась воронка, становилось совершенно темно; шум, рев и свист заглушали все. Частые громадные молнии стали причинами гибели и ожогов людей, вызвали ряд пожаров. Местами выпадали градины величиной с куриное яйцо. Отдельные градины, самые тяжелые, имели вид звезды, их вес доходил до 400–600 граммов.

На Немецком рынке городовой попал в самый вихрь; его высоко подняло в воздух и, хотя он летел в потоке воздуха, «колотило градинами»; затем его отбросило в сторону. Когда он пришел в себя, на нем лежали двое мужчин, женщина с разбитой головой и лошадь.

Разрушения коснулись прежде всего деревянных строений, прочным каменным домам были нанесены лишь отдельные повреждения — с них срывались крыши, в оконные проемы залетали разные предметы, иногда — деревья (и даже толстым концом вперед).

По дальности полетов тяжелых предметов можно оценить скорость ветра в смерче, а также мощность его. Если использовать такую оценку и сравнить московский смерч 1904 года со смерчами в США, то его надо отнести к разряду средних. Длина пути главной воронки определялась современниками в 40 верст, но, скорее всего, это был путь, пройденный несколькими воронками, сменявшими друг друга. Общая длительность события была, вероятно, порядка часа. Ширина полосы разрушений — от нескольких сот метров до километра и более. Силу ветра можно «прочувствовать» по такому факту: громадная, массивная фабричная труба из металла была согнута и вершиной легла на мостовую.

Грозные смерчи обрушились на среднюю полосу России и летом 1984 года, 9 июня. Также после полудня. Также порожденные циклоном. Они прошли по территории Ивановской, Костромской и Ярославской областей. Это был летний выходной, когда люди стремятся быть на природе. Повторился московский смерч 1904 года? Не просто повторился: сила ветра теперь была больше, об этом говорит тот факт, например, что пятидесятитонный бак водонапорной башни на территории туристского комплекса был сорван ветром и отнесен метров на двести в сторону. Градины выпадали величиной с голубиное яйцо.

Другие смерчи средней полосы такой сокрушительной силы не достигали. Но случаются они не так уж редко: неоднократно в нашем столетии возникали смерчи в Москве и Московской области, большие разрушения вызвал смерч 1953 года в Ростове Ярославской области, было 4 смерча в Арзамасе, прошли значительные смерчи у Мурома и у Курска и т. д.

Сила смерча, по–видимому, связана с высотой грозового облака, из которого этот смерч происходит. Чем ниже идет над Землей это облако, тем толще и разрушительнее смерч. Описанные сильные смерчи вызывали разрушения в полосе, шириной примерно в полкилометра. Полоса же длинных, тонких («змееобразных») смерчей очень узка, иногда составляет всего лишь несколько метров.

Следы такого «микросмерча» автору довелось видеть под Москвой, недалеко от Наро — Фоминска, летом 1983 года. Смерч прошел через ельник–сеянец. Елки в нем были все одной высоты (примерно в полтора человеческих роста), чахлые из–за слишком густой посадки — стояли они почти вплотную. Как будто кто–то специально приготовил все для физического эксперимента: однородность условий выдержана, каждый клочок площади «проявлен» деревьями.

От прохода смерча остались «поляны» в чаще. Деревья на них повалены, перепутаны и скрещены, кажется, как попало. Но, разглядывая, можно сделать определенные выводы о смерче. По силе он был невелик: каких–нибудь раздавленных, раскрошенных деревьев не видно. Нет и подброшенных в воздух: ни одно дерево не висит вверх ногами, хотя выдернутых с корнем немало. Горизонтальная вращательная скорость ветра явно немного превосходила скорость его продвижения вдоль пути: деревья ломались при закручивании. Особенно хорошо это было видно там, где деревья росли буквально рядом, соприкасаясь стволами по несколько штук вместе. Деревья в этих «пучках» были повалены или надломлены так, что их макушки указывали совершенно разное направление. Но некоторые деревца упали вершина к вершине, торец к торцу. Слом у таких деревьев приходился на самую нижнюю часть ствола, у корня. Если они лежали прямо на земле, то напоминали сложенную человеком связку хвороста.

По лесу смерч шел подпрыгивая: то касаясь земли, то поднимаясь в воздух, и след оставил прерывистый в виде пятен и полос, порой изогнутых и не очень длинных. Границы их, как и полагается, были четкими: шаг–два в сторону — и поднимается нетронутая еловая щетина. Прошедший смерч смог проявить типичные смерчевые признаки при удивительно малых размерах: встречались правильные круглые пятна от силы четыре метра диаметром! Такой «микросмерч» вполне бы мог сойти за Белого человека Антипаютинской тундры (о нем шла речь в главе 9).

Что же думают о смерче физики? Об общих проблемах зарождения и «самоорганизации» вихря шла речь в предыдущем разделе. Но у смерчей есть особое качество — тесная связь с грозовым «материнским» облаком. А грозовое облако — это уже не обычный нейтральный воздух, в нем есть свободные носители электрического заряда. Это уже плазма, проводящий газ (см. главы 4 и 5). Ученые добились определенных успехов, рассматривая смерч как плазменную систему.

<<< Назад
Вперед >>>

Генерация: 4.667. Запросов К БД/Cache: 3 / 1
Вверх Вниз