Книга: Происхождение жизни. От туманности до клетки

Геномный материал LUCA и предшествующих стадий эволюции

<<< Назад
Вперед >>>

Геномный материал LUCA и предшествующих стадий эволюции

На основании того, что ключевые ферменты копирования ДНК у бактерий и архей не просто разные, а явно неродственные, было выдвинуто предположение, что LUCA еще обладал РНК-геномом, а переход к ДНК произошел независимо в линиях бактерий и архей (Forterre, 2006). Но эту идею трудно примирить с другими данными.

Сравнительная геномика показывает, что у LUCA было более 1000 генов. Такое количество генов общего предка бактерий и архей означает, что его геном имел достаточно большой размер, порядка 2 млн пар нуклеотидов (для сравнения: геном кишечной палочки имеет длину около 4 млн пар нуклеотидов, самый маленький геном свободноживущей бактерии Pelagibacter ubique – около 1,3 млн пар нуклеотидов). РНК-геномы современных вирусов не превышают 30 000 пар нуклеотидов, тогда как у ДНК-вирусов они достигают 2 млн пар. Размер РНК-геномов ограничен по многим причинам. Во-первых, цепь РНК подвержена самопроизвольным разрывам и еще легче разрывается ионами железа, щелочами и просто высокой температурой. Во-вторых, одно из азотистых оснований – цитозин – в воде постепенно теряет аминогруппу (дезаминируется), превращаясь в другое основание – урацил. В-третьих, при образовании шпилек в РНК нередко образуются каталитические активные участки-рибозимы, которые разрезают себя сами.

Все эти недостатки РНК устранены в ДНК. ДНК содержит дезоксирибозу, не имеющую 2' – гидроксильных групп, с которых начинается большинство реакций гидролиза (рис. 14.1). Эти же гидроксильные группы важны для каталитической активности РНК, поэтому ДНК в отличие от РНК не образует саморазрезающихся рибозимов. Наконец, вместо урацила в ДНК содержится его аналог с дополнительной метильной (СН3) группой – тимин, поэтому урацил, получившийся при дезаминировании цитозина, легко можно обнаружить и починить.


Как показано в работах Манфреда Эйгена, для поддержания структуры живой системы из поколения в поколение необходимо, чтобы среднее количество новых значимых (т. е. сильно влияющих на приспособленность) мутаций в каждом поколении не превышало одной. Все современные организмы, имеющие геномы в диапазоне от 5000 до 5 000 000 нуклеотидов (а это вирусы и бактерии), имеют частоту мутаций в пределах 0,5–1 за поколение, что ниже порога Эйгена. Животные и растения с большими геномами обошли это ограничение за счет избыточности многих генов и полового размножения (так, у человека в среднем происходит 30 новых мутаций за поколение), но вряд ли эти механизмы работали в РНК-мире. Частота мутаций складывается из двух факторов: частоты ошибок при копировании генома и частоты повреждений генома между копированиями. Точность работы РНК-зависимой РНК-полимеразы в принципе может быть достаточно высокой: в экспериментах по искусственному отбору точность РНК-полимеразы вируса желтой лихорадки была доведена до 1 ошибки на 5 000 000 нуклеотидов, что близко к точности бактериальных ДНК-полимераз (Pugachev et al., 2004). Однако уязвимость РНК к гидролизу и дезаминированию цитозина неизбежно вызывает частое появление мутаций между копированиями и ограничивает размер РНК-генома на уровне менее 100 000 пар нуклеотидов.

Реакция превращения рибозы в дезоксирибозу очень сложна и связана с образованием опасных радикалов. Рибозимы не могут ее проводить, так как будет повреждаться рибоза в их структуре. Все известные ферменты, проводящие эту реакцию (рибонуклеотид-редуктазы), – большие белки размером около 1000 аминокислот, т. е. для их кодирования нужно как минимум 3000 нуклеотидов. Поэтому между РНК и ДНК-геномами, возможно, были промежуточные стадии, более простые в получении, чем ДНК, но более стабильные, чем РНК. Одной из таких промежуточных стадий мог быть метил-РНК-геном (Poole et al., 2000). В современных рибосомных и некоторых других клеточных РНК к отдельным 2' – гидроксильным (-ОН) группам рибозы присоединены метильные (-СН3) группы (рис. 14.1, справа). Это блокирует «паразитные» каталитические процессы и защищает цепь РНК от гидролиза в метилированном месте. Метилирование РНК у архей и эукариот делается одним ферментом при помощи «направляющих» малых ядрышковых РНК (мяРНК, snoRNA). Метилированию подвергается до 1–2 % нуклеотидов рибосомной РНК в клетках, а в пробирке в отсутствие мяРНК тот же фермент может прометилировать до 8 % нуклеотидов. Стабильность метил-РНК генома могла отодвинуть предел Эйгена в несколько раз по сравнению с РНК-геномом, возможно, до 300 000–500 000 пар нуклеотидов.

<<< Назад
Вперед >>>

Генерация: 0.283. Запросов К БД/Cache: 0 / 0
Вверх Вниз