Книга: Самая главная молекула. От структуры ДНК к биомедицине XXI века
ДНК и рак
<<< Назад 11 ДНК и судьба |
Вперед >>> Команда «Умри!» |
ДНК и рак
Наша затянувшаяся борьба с раком – это самая настоящая война. Число жертв в этой войне не поддается учету: нет ни одной семьи на Земле, которая не была бы затронута. И несмотря на громадные усилия, несмотря на появляющиеся вновь и вновь надежды, несмотря на медленный, но устойчивый прогресс в методах терапии, люди продолжают умирать: рак наряду с сердечно-сосудистыми заболеваниями остается главной причиной смерти в развитых странах.
Рак стоит среди других болезней особняком – потому, что раковая клетка – это своя же клетка, но ведет она себя как чужая. Это, если угодно, «пятая колонна» в организме. До поры до времени такая клетка ничем не отличается от других. Она строго подчиняется правилам общежития, принятым в многоклеточном сообществе. Согласно главному из этих правил во взрослом организме деление клеток происходит строго контролируемо, в разных тканях по-разному, а в некоторых (например, в нервных тканях) строго запрещено. Иначе нельзя, ведь если бы каждая клетка делилась как ей вздумается, то организм быстро превратился бы в бесформенный сгусток клеток.
В какой-то момент такая «послушная» дифференцированная клетка перестает подчиняться правилам и начинает безудержно делиться, т. е. превращается в раковую. Причем это свойство передается всему ее потомству. Отсюда и метастазы – множественные очаги болезни, возникающие в результате деления раковых клеток, разнесенных кровотоком от исходной опухоли. И все это – результат какого-то перерождения, наступившего в одной-единственной клетке.
Откуда же берутся клетки-предательницы? Так как их плохое поведение передается по наследству, то первое, что приходит в голову, – предположить, что имеет место какое-то изменение в ДНК данной клетки, которое превращает нормальную клетку в «сумасшедшую». Впрочем, это предположение, которое не вызывало бы никаких возражений применительно к бактериям (вспомним опыты Эвери, о которых рассказывалось в главе 1), в отношении клеток высших далеко не столь очевидно.
Мы знаем, что клетки многоклеточного организма обладают способностью резко менять программу своего поведения и без изменения в ДНК. Так из одной-единственной оплодотворенной яйцеклетки возникает целый организм, построенный из клеток, весьма отличающихся друг от друга по свойствам и функциям (скажем, клетки печени и кости). Но во всех (точнее, почти во всех) этих клетках содержится вся исходная генетическая информация.
В большинстве случаев дифференцировка клеток связана с изменением активности генов – при неизменности самих генов и вообще последовательности ДНК. Просто в одних клетках многоклеточного организма работают одни гены, а в других – другие.
У приверженцев весьма стройной теории, согласно которой рак – это просто дедифференцировка клетки, происходящая по каким-то внутренним причинам, есть свои трудности. Главная трудность выявилась еще в начале XX века в опытах на животных.
Эти опыты показали, что рак можно вызывать извне, в частности, заражая животных вирусом. Вирусы, способные вызывать рак у животных, были названы онкогенными. Их в настоящее время известно множество.
Одной из самых плодотворных идей, выдвигавшихся за всю долгую историю изучения рака, была вирусогенетическая теория, предложенная в 1940-х годах замечательным российским ученым Львом Александровичем Зильбером (1894–1966). На современном языке эту теорию можно сформулировать так. Попадая в здоровую клетку, ДНК онкогенного вируса встраивается в ДНК клетки и изменяет ее генетические свойства, из-за чего клетка начинает безудержно делиться. Встроенная вирусная ДНК удваивается вместе с ДНК клетки и передается следующим поколениям.
Вирусная теория с большим трудом пробивала себе дорогу. Конечно, то, что некоторые опухоли, наблюдаемые у животных, вызываются вирусами, никто не отрицал. Но относительно общности этой концепции и ее применимости к опухолям человека имелись серьезные сомнения. Ведь хорошо известно, что рак можно вызвать самыми разнообразными воздействиями – физическими и химическими. Известно огромное разнообразие веществ, называемых канцерогенами, которые резко повышают вероятность образования раковой опухоли. При чем же здесь вирусы?
Но наиболее сильный удар по вирусной теории был нанесен, когда выяснилось, что у многих онкогенных вирусов генетическим материалом служит не ДНК, а РНК. РНК не может встраиваться в ДНК. Что же в таком случае встраивать вирусу? То, что по РНК может синтезироваться ДНК, необходимая для встраивания, тогда не было известно и считалось просто невозможным. Получалось, что изменения, приводящие к раку, могут не затрагивать ДНК, а значит, вирусогенетическая теория оказывалась несостоятельной.
Все же некоторые биологи никак не хотели расставаться с идеей Зильбера. Она импонировала своей простотой и конкретностью, да и эксперимент упорно показывал – онкогенные вирусы могут вызывать рак. И хотя это явно противоречило представлениям молекулярной биологии того времени, все же продолжались поиски причин, которые позволяли бы РНКовым вирусам передавать свою генетическую информацию клетке. Особенно упорным был Говард Темин. И его настойчивость была вознаграждена. В 1970 году он, а также Дэвид Балтимор обнаружили в РНКовых онкогенных вирусах фермент, названный ревертазой, который синтезирует ДНК по вирусной РНК, как только вирус попадает в клетку. Эта «вирусная» ДНК встраивается в ДНК клетки, что и вызывает злокачественные перерождения.
Это открытие, которое, как уже говорилось в главе 4, было знаменательной вехой в истории молекулярной биологии, стало триумфом вирусогенетической теории рака. Казалось несомненным, что вирусная природа рака доказана. Действие канцерогенов и многие неясности вирусной теории отступили на второй план. Главное – выделить вирусы, отвечающие разным видам рака, и научиться бороться с ними.
Но время шло, а реальные успехи не приходили. Прежде всего никак не удавалось обнаружить вирусы рака человека. Вообще-то, значительному отставанию исследований в области рака человека по сравнению с раковыми заболеваниями животных не приходится удивляться. Конечно, можно попытаться выделить вирус из удаленной опухоли, из крови больного лейкемией. Но как проверить, что это действительно вирус рака? Нельзя же заражать здорового человека! Правда, эту трудность, хотя и отчасти, удалось преодолеть. Уже довольно давно биологи научились культивировать клетки человека и других животных in vitro, вне живого организма. Растить такие клетки несравненно труднее, чем бактериальные или дрожжевые. Но зато это позволяет ставить эксперименты, невозможные в иных условиях.
Обычные, дифференцированные клетки и в пробирке ведут себя цивилизованно, подчиняясь тем правилам, к которым приучены в многоклеточном организме. Они, например, образуют на дне стеклянного сосуда с плоским дном лишь один слой, после чего их рост прекращается. Совсем иначе ведут себя раковые клетки. Делясь, они начинают вылезать из монослоя, образуя хорошо видимый под микроскопом очаг, уплотнение. Так что раковое перерождение клеток вполне успешно изучают in vitro, вне организма.
В конце концов Роберту Галло из Национального института исследования рака (США) удалось добиться успеха. Он выделил онкогенный вирус, вызывающий одну из форм лейкемии у человека. Кстати, когда впоследствии был выделен ВИЧ, вирус СПИДа, оказалось, что эти два вируса – близкие родственники. И все же вирусную природу имеют весьма редкие формы рака человека. Абсолютное большинство случаев заболевания раком никак не связано с вирусами.
Да и с изучением рака животных, где выделенных и изученных онковирусов хоть отбавляй, тоже не все обстояло благополучно. Оказалось, что в большинстве случаев ДНК вируса уже встроена в ДНК животного от рождения, заранее. Тогда почему же все животные с детства не болеют раком? Получалось, что, кроме присутствия вирусной ДНК в клетке, для возникновения рака нужно еще что-то, еще какая-то команда. Может быть, сигналом к включению в работу вирусной ДНК и служит канцероген?
Но тогда получается, что канцероген и есть главная причина. Ведь если вирусная ДНК уже всегда заранее есть в клетке, то зачем вообще говорить о вирусе? Просто так устроена ДНК у данного животного, а рак возникает под действием канцерогена. Может быть, канцероген действует на встроенную ДНК вируса, может быть, на другие участки ДНК. А может быть, он вообще действует не на ДНК, а на какой-то неведомый пока сигнал дифференцировки, после чего клетка «забывает» правила поведения?
Да, не прошло и десяти лет со времени торжества вирусной теории рака, как все опять сползло к старым вопросам и к старым аргументам. Получалось, что от проклятой проблемы дифференцировки никуда не уйти.
Правда, надежда все же оставалась. Что, если канцерогены все-таки действуют на ДНК (встроенную вирусную или на другие участки – не так важно), изменяя ее текст? Иными словами, что, если канцерогены – это на самом деле мутагены?
Проблема канцерогенов уже давно привлекает внимание науки, и вовсе не только в связи с теоретическими исследованиями природы рака. Каждое новое химическое соединение, с которым сталкивается человек, должно быть проверено на канцерогенность. История знает слишком много примеров того, как легкомысленное отношение к этой проверке приводило через много лет к гибели людей.
Но как проверить, канцероген данное вещество или нет? Вот уже многие годы предпринимаются попытки разработать быстрые и достаточно дешевые методы тестирования химических веществ на их канцерогенность. Собственно, именно эта проверка оказывается сейчас самой дорогой и самой длительной процедурой при испытании любого нового лекарства. Считается, что необходимо подвергнуть подопытных животных воздействию препарата, а потом проследить за ними и за контрольными животными, вплоть до их естественной (или неестественной, в случае, если испытываемое вещество окажется канцерогеном) смерти. Нельзя ли эту процедуру упростить?
Обширный материал, накопленный в результате трудоемких испытаний химических соединений на канцерогенность, позволил Б. Эймсу (Калифорнийский университет в Беркли, США) разработать и обосновать весьма эффективный тест на канцерогенность. В 1975 году Эймс предложил проверять вещества не на канцерогенность, а на мутагенность. Для проверки на мутагенность не нужно возиться с животными и даже с культурой их клеток. Можно взять бактерии, для которых существуют давно разработанные методы быстрого подсчета темпа мутирования, т. е. изменения ДНКового текста. Эймс еще усовершенствовал эти методы и постарался проверить гипотезу, по которой мутагенность и канцерогенность – это на самом деле одно и то же.
Казалось бы, для проверки надо было бы брать химические соединения, известные как канцерогены, и проверять на мутагенную активность.
Но нет, так просто поступать нельзя. Ведь в организме химические соединения претерпевают перестройку, циркулируя в крови. Это случается в печени, которая прямо-таки напичкана ферментами, способными проводить самые разные модификации. Вполне может быть (и в ряде случаев показано, что это так), что рак вызывают не сами исходные вещества, а продукты их метаболизма в организме. Поэтому, прежде чем испытывать вещества на мутагенность в своем тесте, Эймс обрабатывал их экстрактом из печени животных. Эймс проверил на мутагенность 300 веществ, среди которых были как известные канцерогены, так и вещества вполне безобидные. Эта проверка показала, что между канцерогенностью и мутагенностью существует совершенно явная корреляция. В 90 случаях из 100 канцерогены оказывались и сильными мутагенами. В то же время только 13 % соединений, не являющихся канцерогенами, оказывали мутагенное действие.
Это очень убедительный результат. Он показывает, что тест Эймса эффективен, во всяком случае – для массовых испытаний химических соединений. Ведь Эймс вместе с одним всего лишь помощником сумел за короткое время испытать 300 соединений. Чтобы накопить сведения о канцерогенности этих веществ обычными методами, потребовались десятилетия упорного труда многих людей.
Цель работы Эймса была сугубо практической: разработать эффективный и дешевый тест на канцерогенность. Но результаты работы имели большое значение для понимания природы рака. Реально они не оставляли сомнений в том, что канцерогены вызывают рак именно потому, что изменяют ДНК клетки.
Получалось, что первичные события, приводящие в итоге к раку, разыгрываются в генетическом материале, в ДНК. А раз так, то к штурму проблемы рака вновь приступили молекулярные биологи. Только на этот раз, спустя десять лет после работ Темина и Балтимора, они были уже во всеоружии мощных методов манипулирования с ДНК – методов генной инженерии.
В 1979 году были поставлены опыты, в которых удалось, на этот раз окончательно, доказать генетическую, ДНКовую природу рака. Эти опыты проводились на мышах, но принципиально они не отличаются от опытов по трансформации у пневмококков, которыми занимался Эвери на 40 лет раньше (см. главу 1). Автор работы Роберт Вайнберг (Массачусетский технологический институт) рассуждал так. Из экспериментов Эймса следует, что канцерогены должны что-то менять в ДНК, после чего она приобретает способность превращать нормальную клетку в раковую. Если это действительно так, то, выделив ДНК из раковых клеток и перенеся ее в здоровые клетки, мы должны (с некоторой вероятностью, разумеется, – как и при любой трансформации) наблюдать превращение здоровых клеток в раковые.
Вайнберг выделил ДНК из мышиных опухолевых клеток, перерождение которых было вызвано действием мощного канцерогена. Затем он провел опыты по трансформации. Раковая ДНК была добавлена к культуре здоровых клеток мыши, известной под кодовым названием NIH3Т3. Результаты опыта были таковы. В пяти случаях из пятнадцати клетки NIH3Т3 превратились в раковые. Ни в одном из десяти контрольных опытов, в которых к культуре NIH3Т3 была добавлена нормальная ДНК, злокачественного перерождения не происходило.
Свойства клеток, перерожденных способом трансформации, были проверены на животных. Раковые клетки NIH3Т3 были приживлены здоровым мышам, и у тех образовались самые настоящие раковые опухоли. Но это еще не все. Перерождение клеток NIH3Т3 в раковые удалось вызвать не только с помощью ДНК, взятой из раковых клеток мыши, но и с помощью ДНК, выделенной из раковых клеток человека! ДНК из здоровых тканей человека не приводит к злокачественному перерождению клеток NIH3Т3.
Вот на этом этапе к работе подключились генные инженеры. Раз ДНК человека вызывает трансформацию, значит, в ней есть онкоген – участок, ответственный за роковые события. Началась охота на онкогены. Очень большую пользу в поиске онкогенов оказали онкогенные вирусы. Выяснилось, что они несут уже готовый онкоген. В кратчайший срок было клонировано и детально охарактеризовано (т. е. определена полная нуклеотидная последовательность) около 30 онкогенов. Специалисты считают, что этот сравнительно небольшой набор генов ответствен практически за все многообразие раковых заболеваний у животных и человека.
Выяснилось, что у каждого онкогена есть свой клеточный «брат», нормальный ген, названный протоонкогеном. С молекулярно-генетической точки зрения онкогены, так же как и протоонкогены, – это обычные структурные гены, т. е. каждый из них несет информацию о строении определенного белка. Сам по себе протоонкоген не опасен. Более того, белки – продукты протоонкогенов играют ключевую роль в процессах межклеточной и внутриклеточной коммуникации.
Ведь чтобы примерно вести себя в дружной семье клеток многоклеточного организма, каждая клетка должна подчиняться поступающим к ней сигналам. Важнейший из таких сигналов – это сигнал о размножении (делении). Если, скажем, вы поранились при бритье, то клетки кожи, окружающие ранку, начинают усиленно делиться, чтобы залечить образовавшуюся брешь. Курьером, приносящим клетке приказ о делении, служат специальные белковые молекулы – ростовые факторы. Они доставляют свои «сообщения» другим белковым молекулам – рецепторам, встроенным во внешнюю оболочку клетки.
Итак, сообщение получено клеткой – ростовой фактор связался со своим рецептором. Но ведь всем в клетке заправляет ДНК, которая запрятана внутри ядра. Значит, чтобы быть услышанным, сигнал должен еще преодолеть внешнюю оболочку клетки, цитоплазму и ядерную оболочку. На этом сложном пути сигнал еще несколько раз преобразуется, его переносят особые внутриклеточные курьеры, в процессе участвует целый ряд белков.
Так вот, важнейший факт состоит в том, что белки – продукты протоонкогенов – это ростовые факторы, рецепторы и другие белки межклеточной и внутриклеточной коммуникации. Чем же отличается зловредный онкоген от безобидного, даже очень нужного протоонкогена?
Известен ряд механизмов, приводящих к превращению протоонкогена в онкоген. Это может быть просто точечная мутация – замена одного аминокислотного остатка. Это может быть хромосомная перестройка, в результате которой протоонкоген переносится в другую хромосому. При этом либо резко нарушается регуляция синтеза нормального продукта протоонкогена, либо в ходе перестройки происходит усечение самого гена. Может быть и так, что сам протоонкоген остается на месте, но к нему перемещается регуляторная область из другой хромосомы, и т. д.
Из детективных книг и фильмов известно, что самый опасный шпион – это тот, кто, внедрившись в цепь передачи приказов вражеской армии, в нужный момент подсовывает ложный сигнал о наступлении. Именно так ведут себя онкогены. Путем усиленной наработки ростового фактора, производя дефектный рецептор или какой-либо белок внутриклеточной коммуникации, онкоген заставляет ДНК клетки подчиниться ложному сигналу о делении. Клетки, несущие онкоген, начинают безудержно делиться, причем дочерние клетки тоже несут онкоген, т. е. снабжены сигналом к делению. Так возникает рак.
Итак, исследование природы рака прочно перешло на молекулярный уровень. Мы понимаем гораздо лучше, чем раньше, что требуется сделать, чтобы победить эту страшную болезнь. Необходимо либо убить все раковые клетки, либо заставить раковую клетку прекратить экспрессию онкогена, что и делает ее раковой. Исследователи пошли обоими путями.
<<< Назад 11 ДНК и судьба |
Вперед >>> Команда «Умри!» |
- Дороги к Белухе
- Аналогия из геологии
- Вода и жизнь на Земле
- Глава XV Каким он должен быть?
- 4. Заразные болезни, их причины и способы борьбы с ними
- Предисловие
- 1. Вирусы кори и паротита
- Морская «нечисть»
- Что такое свет?
- Глава 8 Промышленная революция. Как паровой двигатель «продвинул» капиталистический Запад на восток
- 939. Почему устрицы так восприимчивы к пестицидам?
- 944. Сравнимы ли радиоактивность моря и радиоактивность суши?