Книга: Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий
Сумма многих технологий
<<< Назад Когда 2,70 >> 2,23 |
Вперед >>> Тяжелые изотопы |
Сумма многих технологий
Когда в результате ядерных реакций в уране накопится необходимое количество плутония, его необходимо отделить не только от самого урана, но и от осколков деления — как урана, так и плутония, выгоревших в цепной ядерной реакции. Кроме того, в урано-плутониевой массе есть и некоторое количество нептуния. Сложнее всего отделить плутоний от нептуния и редкоземельных элементов (лантаноидов). Плутонию как химическому элементу в какой-то мере не повезло. С точки зрения химика, главный элемент ядерной энергетики — всего лишь один из четырнадцати актиноидов. Подобно редкоземельным элементам, все элементы актиниевого ряда очень близки между собой по химическим свойствам, строение внешних электронных оболочек атомов всех элементов от актиния до 103-го одинаково. Еще неприятнее, что химические свойства актиноидов подобны свойствам редкоземельных элементов, а среди осколков деления урана и плутония лантаноидов хоть отбавляй. Но зато 94-й элемент может находиться в пяти валентных состояниях, и это «подслащивает пилюлю» — помогает отделить плутоний и от урана, и от осколков деления.
Валентность плутония меняется от трех до семи. Химически наиболее стабильны (а следовательно, наиболее распространены и наиболее изучены) соединения четырехвалентного плутония.
Разделение близких по химическим свойствам актиноидов — урана, нептуния и плутония — может быть основано на разнице в свойствах их четырех- и шестивалентных соединений.
Нет нужды подробно описывать все стадии химического разделения плутония и урана. Обычно разделение их начинают с растворения урановых брусков в азотной кислоте, после чего содержащиеся в растворе уран, нептуний, плутоний и осколочные элементы «разлучают», применяя для этого уже традиционные радиохимические методы — осаждение, экстракцию, ионный обмен и другие. Конечные плутонийсодержащие продукты этой многостадийной технологии — его двуокись PuO2 или фториды — PuF3 или PuF4. Их восстанавливают до металла парами бария, кальция или лития. Однако полученный в этих процессах плутоний не годится на роль конструкционного материала — тепловыделяющих элементов энергетических ядерных реакторов из него не сделать, заряда атомной бомбы не отлить. Почему? Температура плавления плутония — всего 640°C — вполне достижима.
При каких бы «ультращадящих» режимах ни отливали детали из чистого плутония, в отливках при затвердевании всегда появятся трещины. При 640°C твердеющий плутоний образует кубическую кристаллическую решетку. По мере уменьшения температуры плотность металла постепенно растет. Но вот температура достигла 480°C, и тут неожиданно плотность плутония резко падает. До причин этой аномалии докопались довольно быстро: при этой температуре атомы плутония перестраиваются в кристаллической решетке. Она становится тетрагональной и очень «рыхлой». Такой плутоний может плавать в собственном расплаве, как лед на воде.
Температура продолжает падать, вот она достигла 451°C, и атомы снова образовали кубическую решетку, но расположились па большем, чем в первом случае, расстоянии друг от друга. При дальнейшем охлаждении решетка становится сначала орторомбической, затем моноклинной. Всего плутоний образует шесть различных кристаллических форм! Две из них отличаются замечательным свойством — отрицательным коэффициентом температурного расширения: с ростом температуры металл не расширяется, а сжимается.
Когда температура достигает 122°C и атомы плутония в шестой раз перестраивают свои ряды, плотность меняется особенно сильно — от 17,77 до 19,82 г/см3. Больше, чем на 10%! Соответственно уменьшается объем слитка. Если против напряжений, возникавших на других переходах, металл еще мог устоять, то в этот момент разрушение неизбежно.
Как же тогда изготовить детали из этого удивительного металла? Металлурги легируют плутоний (добавляют в него незначительные количества нужных элементов) и получают отливки без единой трещины. Из них и делают плутониевые заряды ядерных бомб. Вес заряда (он определяется прежде всего критической массой изотопа) 5–6 кг. Он без труда поместился бы в кубике с размером ребра 10 см.
<<< Назад Когда 2,70 >> 2,23 |
Вперед >>> Тяжелые изотопы |
- Глава 27 Микробиология — основа новейших технологий
- Глава 6. Этические проблемы применения новых генно-инженерных технологий
- 5.3. Философско-этические основания современных технологий нейролингвистического программирования
- Нанотехнологии, биотехнологии, композитные материалы В Беларуси и РФ – Российской Федерации (Восточной части Руси) начат...
- Парк высоких технологий
- Можно ли использовать результаты исследований квантовой биологии для создания новых технологий на основе жизни
- 9.2. Области применения инженерно-биологических технологий и их основные типы
- Счастливый клевер человечества: Всеобщая история открытий, технологий, конкуренции и богатства
- Пакетирование технологий
- Патентное право и открытость технологий
- 2-противоречие и 3-баланс технологий
- Техногония: происхождение и преображение технологий