Книга: Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий
Нейтронные опыты Ферми
<<< Назад НЕПТУНИЙ |
Вперед >>> Стопка папиросной бумаги |
Нейтронные опыты Ферми
В январе 1934 г. Фредерик Жолио и Ирэн Кюри сообщили об открытии искусственной радиоактивности. Облучив алюминий альфа-частицами, они получили радиоактивный фосфор.
Познакомившись со статьей французских ученых, Энрико Ферми решил вызвать радиоактивность нейтронами. Теоретикам в те годы еще не было ясно, можно ли добиться этого с помощью нейтральных частиц. Ответ на вопрос могли дать только опыты.
Как и Фредерик Жолио, Ферми начал эксперименты с легкими элементами. Методика была проста: после облучения нейтронами исследуемое вещество подносили к тонкому окну счетчика Гейгера. Ни водород, ни гелий, ни литий, ни бор не проявили активности. Тем не менее опыты продолжались. Вскоре дошла очередь до фтора.
Фотография 1934 г. На ней — молодые итальянские ученые, первыми в мире получившие трансурановый элемент, но не сумевшие его идентифицировать. Слева направо: Д'Агостино, Сегре, Амальди, Розетти, Ферми
Счетчик заработал полным ходом, когда к его окну поднесли облученную плавиковую кислоту. Сделав вывод, что с помощью нейтронов можно превратить нерадиоактивные ядра в радиоактивные, Ферми не остановился на этом. Он решил подвергнуть нейтронному обстрелу тяжелые элементы. Это было важное решение: в опытах супругов Жолио-Кюри бомбардировка вольфрама, золота и свинца ничего не дала. Это и понятно: заряд тяжелых ядер велик, и они, разумеется, отталкивают одноименно заряженную альфа-частицу с огромной силой. «Альфа- снаряд» не долетает до ядра-мишени.
На нейтральную частицу электрические силы не действуют. У нейтрона были шансы проникнуть в массивное ядро и что-то там натворить…
В группу Ферми кроме него самого входили талантливые молодые физики Франко Разетти, Эмилио Сегре, Эдоардо Амальди и химик Оскар Д’Агостино. Они и начали систематические исследования. Химические элементы облучались один за другим. Иногда, если наведенная активность исчезала не слишком быстро, удавалось определить атомный номер радиоактивного излучателя по его химическим свойствам…
Так, когда физики облучали нейтронами железо, оно становилось радиоактивным. По-видимому, часть его атомов превращалась в радиоактивный изотоп одного из соседних элементов. Но какого из них? Чтобы выяснить это, к азотнокислому раствору облученного железа добавляли соли хрома, марганца, кобальта. Затем по известным прописям эти элементы выделяли из растворов. Счетчик Гейгера молчал, когда к нему подносили фракции, содержащие хром или кобальт. Если же у окна гейгеровской трубки помещали извлеченные марганцевые соли, начинался счет. Получалось, что под действием нейтронов железо превратилось в марганец…
Особенно большие надежды физики связывали с облучением элемента № 92, занимавшего тогда в таблице Менделеева последнюю клетку. «Папа» Ферми (прозванный так друзьями за непогрешимость во всех делах, касавшихся физики) ожидал, что естественный уран, захватив нейтрон, перейдет в искусственный изотоп 239U, а затем уран-239, испустив бета-частицу, превратится в изотоп первого зауранового элемента с атомным номером 93!
На первых порах надежды сбывались. Из облученного нейтронами урана Д’Агостино выделил излучатель с периодом полураспада 13 минут. Во всех химических процедурах неизвестная активность следовала за рением. Напрашивался вывод: химические свойства рения и полученного в нейтронной бомбардировке радиоактивного изотопа близки между собой. Из урана после нейтронного захвата мог получиться только очень тяжелый элемент. Среди тяжелых элементов химическим аналогом рения мог быть только элемент № 93. Во всяком случае, так считалось в 1934 г.
Нашлись и дополнительные доказательства. Поставили решающий контрольный опыт — experimentum crucis, основанный на простой логически ясной идее: если растворить облученный уран и очистить раствор от всех элементов с атомными номерами от 82 до 92 (свинец — уран), то в этой, уже совсем не мутной, водице легче всего будет поймать трансурановую рыбку. Только бы осталась в растворе хоть какая-нибудь активность! Ферми и его коллеги (как впрочем, и все физики в те годы) не допускали мысли, что легкий нейтрон может так «переворошить» урановое ядро, чтобы из него получалась «досвинцовая» активность. Ведь для этого нужно вырвать из уранового ядра десяток протонов, — задача непосильная для легкой частицы.
Раствор очистили. Тринадцатиминутный изотоп остался! Казалось, первый трансурановый элемент состоялся… И все же что-то было не так. Настораживали данные, появившиеся в других лабораториях: в облученном уране нашли несколько радиоактивных изотопов, химические свойства которых позволяли считать их трансурановыми элементами с атомными номерами от 93 до 96. Но в то же время в тех же опытах были зарегистрированы излучатели со свойствами тория, протактиния и других доурановых элементов. Возникла невероятная путаница. Вокруг «трансуранов» шли горячие споры. Результаты Ферми и его товарищей то поднимались на щит, то опровергались, подчас в очень резкой форме. Все сходились на том, что «что-то есть». Но что?! Достоверного ответа на этот вопрос физики не могли получить в течение нескольких лет. Дискуссия то затихала, то возобновлялась с новой силой.
Этот гордиев узел единым ударом разрубили в 1938 г. немецкие химики Отто Ган и Фриц Штрассман, открывшие деление урановых ядер под действием нейтронов. Стали понятны ошибки тридцать четвертого года. Нейтроны расщепляли урановые ядра на десятки радиоактивных изотопов. Излучение, приписываемое «экарению», в действительности могло быть излучением самого рения. Или даже его более легких аналогов. Изотопы с периодом полураспада от 10 до 17 минут есть и у рения, и у технеция, открытого спустя несколько лет после нейтронных опытов Ферми его коллегой и другом Эмилио Сегре.
Американский физик Эдвин М. Макмиллан (р. 1007), начиная свои эксперименты 1039 г., вовсе не рассчитывал на открытие первого трансуранового элемента. Однако именно в его опытах со стопкой папиросной бумаги был обнаружен элемент № 93, названный нептунием. Название не новое: в XIX столетии его дважды пытались присвоить ложно открытым элементам. Лишь третья попытка оказалась «зачетной»
<<< Назад НЕПТУНИЙ |
Вперед >>> Стопка папиросной бумаги |
- 76. Что такое нейтронные звезды и пульсары?
- Звездная смерть: белые карлики, нейтронные звезды и черные дыры
- Такие разные нейтронные звезды
- Из чего сделаны нейтронные звезды
- Нейтронные консервы
- № 44 Камешек весом с Эверест. Нейтронные звезды и пульсары
- Жёсткокрылые
- Серая крыса
- Невероятная анатомия пульсара
- Глава 5. Далекие и непростые квазары
- 2. Вкратце о Вселенной
- Магнитные, электрические и гравитационные поля