Книга: Астероидно-кометная опасность: вчера, сегодня, завтра
Таблица 5.3. Результаты наблюдений крупных тел в метеорных потоках
<<< Назад 5.3. Свойства метеорных потоков и метеорных роев |
Вперед >>> Таблица 5.4. Метеороидные модели |
Таблица 5.3. Результаты наблюдений крупных тел в метеорных потоках
5.3.3. Структурные характеристики метеорных потоков. Обычно считается, что для крупных метеороидных тел, порождающих фотографические и визуальные метеоры, основными силами, формирующими структуру роя, являются силы гравитационного притяжения со стороны планет. При этом определяющее значение принадлежит неоднократным тесным сближениям метеороидных тел с большими планетами. В то же время при анализе имеющихся фотографических и радиолокационных данных для разреженных метеороидных роев и ассоциаций, а также для спорадической составляющей метеороидного комплекса не удается выявить значимого влияния возмущений со стороны Юпитера на дисперсию больших полуосей метеороидных орбит. Влияние вековых планетных возмущений на эволюцию орбит метеорных тел в роях сказывается лишь на значительных временны?х интервалах и, в основном, на долготу узла. С качественной точки зрения этим влияниям будут подвержены преимущественно крупные метеорные частицы, у которых ?? > 10-3 г/см2, где ? и ? — радиус и плотность метеорной частицы соответственно.
По фотографическим данным методами дисперсионного анализа была выявлена зависимость дисперсии орбит частиц в метеороидных роях от перигелийного расстояния: с уменьшением перигелийного расстояния рассеяние орбит в роях увеличивается. Этот вывод оказался менее убедительным для радиолокационных данных, что может быть обусловлено сравнительно большими случайными погрешностями метода.
Исследования дисперсии элементов фотографических орбит Персеид, метеоров больших метеорных потоков (Геминид, Северных и Южных Таурид) методами корреляционного анализа показали, что реальная дисперсия орбитальных элементов в роях может быть очень большой. Потоки Тауриды имеют почти в 15 раз больший разброс в значениях q, ?, ?, в 6 раз — в значениях эксцентриситета, в 5 раз — в значениях большой полуоси по сравнению с потоком Геминиды. Поток Персеиды имеет разброс в элементах q, ?, i в 2–3 раза больший, нежели у Геминид, а для элементов e, ? — в 5 раз.
Дисперсия перигелийного расстояния орбит метеорных тел потока Тауриды почти в 6 раз больше, нежели для потока Персеиды. Дисперсии эксцентриситета и наклона в этих потоках почти равны. Эти результаты, полученные для больших метеорных потоков, не согласуются с вышеупомянутым предположением о наличии зависимости дисперсии орбитальных элементов от перигелийного расстояния, ибо для Персеид q = 0,953, для Таурид в среднем q = 0,350, для Геминид q = 0,141. Предполагается, что разброс всех орбитальных элементов увеличивается в процессе эволюции с увеличением возраста потока. Кроме того, отмечается, что поскольку наблюдаемая дисперсия элементов орбит потоков Тауриды, Персеиды и Геминиды превышает ошибки измерений, то точность каталогов орбит метеоров при интерпретации данных не имеет решающего значения.
Другой причиной, определяющей собственный разброс орбит частиц в рое, может служить первичный выброс. Разброс орбит под действием сил, ответственных за единовременный выброс, может быть весьма существенным. Причинами первичного выброса весьма убедительно объясняются наблюдаемые аномалии в распределении метеоров в потоке Квадрантиды, а также наличие вторичного максимума этого потока, наблюдавшегося в 1971–1974 гг. В основном наблюдения показывают очень сложную и разнообразную структуру потоков. В качестве наиболее распространенных и общих структурных характеристик могут быть выделены: а) вариации плотности потока частиц вдоль орбиты;
б) наличие нескольких максимумов численности метеоров;
в) постоянное смещение максимума;
г) слоистая структура роев в широтном направлении;
д) наличие скоплений крупных частиц;
е) волокнистая структура роев в продольном направлении.
Рассмотрим сначала структуру и эволюцию молодых и очень молодых метеороидных роев и метеорных ассоциаций, с которыми принято в настоящее время связывать ряд таких экстремальных явлений в космическом пространстве, как кратковременные повышения на несколько порядков притока космической пыли в атмосферу Земли, увеличение частоты ударов микрометеоритов по космическим аппаратам, усиление грозовой активности, выпадение осадков и пр. Такой рой, по-видимому, образуется в результате полной или частичной дезинтеграции родительского тела и представляет собой совокупность выброшенных из него в недалеком прошлом (6200 лет) пылевых частиц. В дальнейшем такой рой мы будем называть новым образованием.
Проведя анализ наблюдений 3000 метеорных потоков, полученных за 150 лет (с 30-х гг. XIX в. до 80-х гг. XX в.), И. С. Шестака [Шестака, 1990] пришел к выводу о том, что исчезновение метеорных потоков и появление новых может быть следствием эволюции орбит порождающих их метеороидных роев, происходящей под действием различных сил и создающей неблагоприятные условия для приближения этих роев к Земле и их наблюдений. «Исчезнувшие» рои могут существовать в Солнечной системе и через несколько тысячелетий вновь могут подойти к Земле, образуя новые метеорные потоки. Вообще же процесс исчезновения метеороидных роев не исключается, но для подтверждения его требуется значительно больший интервал времени наблюдений.
Из особенностей наблюдаемых новых образований, носящих проблемный характер и требующих точных количественных объяснений, прежде всего надо выделить значительную дисперсию орбитальных элементов частиц в метеорных потоках, т. е. рассеяние орбит метеороидов в потоках. Эта проблема — одна из центральных в метеорной астрономии. Качественное объяснение этого явления было дано Б. Ю. Левиным [Левин, 1956]. Он выделил 4 основных фактора, под действием которых происходят эволюция и постепенное рассеяние каждого метеороидного роя:
1) начальные скорости выброса частиц из родительского тела, создающие первоначальную дисперсию их орбит и, в частности, периодов обращения;
2) различие действия лучевого давления Солнца на частицы разных размеров, также способствующее первоначальной дисперсии их орбит (действие факторов 1 и 2 приводит к растягиванию роя в замкнутое кольцо);
3) планетные возмущения, по-разному действующие на разные части роя и приводящие к его утолщению;
4) эффект Пойнтинга — Робертсона, приводящий к весьма медленному расширению роя в плоскости его орбиты.
По мнению Б. Ю. Левина (применительно к кометам), большое многообразие структурных форм метеорных роев возникает в результате резких изменений кометных орбит вследствие их сближений с планетами, в первую очередь — с Юпитером.
При этом некоторый участок роя на прежней орбите, примыкавший к комете, обязательно переходит вместе с ней на новую орбиту. В зависимости от длительности пребывания кометы на старой орбите, скорости ее распада, размеров прежней орбиты и наличия сближений с орбитами планет перешедший на новую орбиту участок роя может иметь весьма различные структуру и плотность.
В дальнейшем исследователи добавляли некоторые уточняющие эффекты:
5) эффект Ярковского — Радзиевского (подробно об этом эффекте см. в главе 3). Он обусловлен анизотропностью инфракрасного излучения вращающимся сферическим телом. Вследствие этого, различие радиации, излученной двумя полусферами такого тела, вызывает появление добавочной силы.
Н. В. Куликова впервые получила [Катасев, Куликова, 1972] количественные оценки влияния эффекта Ярковского — Радзиевского на эволюцию метеороидных роев. Было показано, что на гелиоцентрических расстояниях свыше 1 а.е. для частиц сантиметрового размера и менее этот эффект играет малую роль в эволюции их орбит. Роль эффекта увеличивается с приближением частицы к Солнцу. Действие эффекта Ярковского — Радзиевского на движение частицы сравнимо с действием эффекта Пойнтинга — Робертсона на расстояниях от Солнца, меньших 0,01 а.е.;
6) Ф. Уиппл [Whipple, 1963] рассмотрел разрушение метеорных тел под действием космической эрозии и показал, что частицы кометного происхождения могут существовать, не подвергаясь эрозии, в течение интервала времени t = ??·4,3·104 лет;
7) Ф. Уиппл [Whipple, 1968] и Дж. Дохнани [Dohnanyi, 1971] исследовали вопрос о роли взаимных столкновений. Метеорные тела, принадлежащие роям, вследствие столкновений друг с другом и со спорадическими частицами дробятся и рассеиваются в пространстве. Среднее время жизни частицы до момента столкновения того же порядка, что и время, в течение которого частица разрушается под действием космической эрозии;
8) Ю. В. Обрубов [Обрубов, 1982], используя теоретические результаты В. Хюбнера [Huebner, 1970], А. А. Дмитриевского [Дмитриевский, 1974] и Л. Кресака [Kresak, 1976], количественно оценил изменения масс пылевых частиц под действием эффектов распыления протонами солнечного ветра, эрозии при столкновениях с микрометеороидами спорадического фона и испарения на интервалах времени порядка нескольких тысяч лет для роев Геминиды, Квадрантиды, ?-Аквариды и Ориониды. Он сделал вывод, что влиянием вышеуказанных эффектов на изменение массы метеороидов, порождающих метеоры ярче 6m, можно пренебречь;
9) Ф. Уиппл [Whipple, 1967] и Е. Н. Поляхова [Поляхова, 1970] исследовали влияние давления протонов солнечного ветра на движение пылевых частиц и установили, что оно на несколько порядков меньше влияния прямого давления света;
10) А. А. Дмитриевский [Дмитриевский, 1974] исследовал силы, обусловленные взаимодействием электрически заряженного метеорного тела с крупномасштабными электрическими и магнитными полями, и обнаружил, что для частиц, размер которых больше 0,05 см, доминирующим фактором является эффект Пойнтинга — Робертсона. Преобладание вышеупомянутых эффектов над эффектом Пойнтинга — Робертсона имеет место лишь для частиц, размер которых меньше 5 микрон;
11) дополняя перечень эволюционных, рассеивающих рои эффектов, следует отметить практически неизученный эффект изменения орбиты ледяного ядра кометы под действием реактивной отдачи сублимирующих с поверхности молекул. На этот фактор сравнительно недавно обратил внимание В. Н. Лебединец [Лебединец и др., 1990].
Имеется еще несколько интересных особенностей наблюдаемых метеорных образований: симметричные относительно эклиптики потоки-близнецы, группы потоков со сходными орбитами, потоки метеоритов и ассоциации метеорных потоков, комет и метеоритов. Большинство исследователей полагает, что в основном метеорные тела в рое имеют более крупные размеры, нежели тела спорадического фона. Точный закон распределения метеорных тел по массе в рое неизвестен. Однако общепринято, что вполне удовлетворительно такое распределение описывается степенным законом, связывающим количество метеорных тел N с величиной их массы m:
где S — параметр, который подбирается для каждого потока.
Трудность применения этого закона заключается в неопределенности показателя S. Этот параметр для каждого конкретного роя уточняется при наблюдении соответствующего потока. Однако, соглашаясь, что параметр S для роев меньше, чем для спорадических метеоров, исследователи получают не всегда одинаковое изменение этого параметра во времени. Считается, что это различие обусловливается неоднородной структурой роя на разных участках его орбиты. Так, для потока Персеиды был получен весьма широкий спектр значений параметра S, различных у разных авторов и для разных участков потока. Для частиц в диапазоне масс 10-3–10-5 г получено S = 1,78 [Hughes, 1973], по данным [Бибарсов, Рубцова, 1970] S = 1,66 и S = 1,9 для разных участков роя, по этим же данным S = 1,71 + 0,07 при ?? = 138,92°, а по [Hughes, 1973] для 288 визуальных метеоров в интервале блеска от +1m до -5m получено S = 1,56 + 0,06. Наблюдается также резкое уменьшение параметра S за одни сутки от 2,4 до 1,44. При этом на внешней части роя отмечается скопление мелких частиц. Оказывается, что величина параметра S минимальна, когда Земля проходит центральную часть роя Персеиды (S = 1,54–1,6). В настоящее время с использованием современных методов обработки наблюдений значение параметра S все более уточняется.
При удалении от центра роя параметр S увеличивается. Это означает, что в центральной части роя Персеиды преобладают преимущественно метеорные тела крупных размеров. Аналогичная структура выявляется и при наблюдении роя Квадрантиды. При встрече с этим роем Земля вначале проходит через скопления мелких метеорных тел, а затем сталкивается с более крупными. По характеру изменения параметра S отмечается, что наиболее крупные частицы этого роя сосредоточены в центральной его части. Доля же мелких метеорных тел в роях относительно невелика. При этом предполагается, что основными механизмами образования мелких частиц в роях являются эффекты дробления и космической эрозии. Для частиц с массами < 8,2 10-2 г величина параметра S, вычисленная по результатам измерений притока космической пыли в верхнюю атмосферу в периоды активности потоков Квадрантиды, Персеиды и Геминиды, соответственно равна 1,59, 1,78 и 1,71. Для потока Геминиды отмечалось также уменьшение параметра S до 1,64 к центру потока в 1978 г.
Размеры пространственных неоднородностей в центральной части потока оцениваются до 4000 км, на периферии — до 200 км. По радиолокационным наблюдениям в 1980–1985 гг. метеорного потока Лириды [Porub?an and ?imek, 1988] показатель S определен в 1,58 и почти постоянен. Это позволяет предположить, что в потоке Лириды находится больше крупных частиц. Кроме того, постоянная величина S свидетельствует об активно продолжающемся прибавлении метеорного вещества в поток. По наблюдениям метеорного потока Леониды в 1973 г. среднее суточное значение параметра S составляло 2,40 [Porub?an, 1974].
Сделаем несколько замечаний относительно структуры «молодых» метеороидных роев. В большинстве случаев такие рои имеют общепризнанную связь с кометами — Леониды (комета 1866 I), Дракониды (комета Джакобини — Циннера), Андромедиды (комета Биэлы) и т. д. В этом случае основная часть метеорных тел роя все еще остается сконцентрированной на участке орбиты вблизи кометы-родоначальницы, что подтверждается наблюдаемой
заметной активностью таких потоков лишь в течение нескольких лет до и после максимума действия потока. В остальные годы такой поток характеризуется крайне малой интенсивностью. Короткая продолжительность потока свидетельствует о его малом поперечном сечении. Интервал интенсивного действия потока Дракониды в 1946 г. не превышал 6 ч, а ярко выраженный максимум интенсивности длился около 10 мин. По результатам наблюдения этого же потока в 1933 г. получено, что сечение его наиболее плотной центральной части, где плотность метеорных тел равна максимально наблюдавшейся, примерно в 5–6 раз меньше сечения всего потока. Аналогичные результаты получены и для потока Леониды. Кроме того, по результатам наблюдений потока Леониды в 1969 г. [Porub?an, 1974] отмечается наличие весьма неширокой (1,4·104 км) плотной центральной части потока, в которой преобладают неслучайные группировки метеороидных тел. За пределами этой области распределение метеороидных тел в рое случайно. В центральной же части более 10 % всего состава метеороидного комплекса находится в парах или группах. Отсутствие подобных группировок в ежегодных потоках связано с распадом таких систем на фазе отделения от родительской кометы.
На основе данных о метеороидных роях и спорадических метеороидах строятся модели метеороидного вещества в межпланетном пространстве для обеспечения безопасности полетов космических аппаратов. В 1985 г. появились две модели метеороидного вещества в околоземном пространстве — это модель Грюна [Grьn et al., 1985] и ГОСТ 25645.128-85 «Вещество метеорное. Модель пространственного распределения» в СССР. С этого времени модели метеороидного вещества непрерывно модифицировались с учетом новых данных о метеороидах в околоземном и межпланетном пространстве. Новые данные дает применение более совершенных методов интерпретации наземных наблюдений метеоров и данных с космических аппаратов, находящихся в межпланетном пространстве, а также вблизи некоторых планет. К сожалению, в СССР и в России с 1985 г. не было создано постоянно действующих рабочих групп по модификации модели метеорного вещества, тогда как в NASA и ESA такие группы существуют и регулярно выпускают рабочие версии действующих моделей метеороидного вещества, которые используются при проектировании космических аппаратов и планировании различных космических миссий.
В мире для обязательного использования при проектировании космических полетов в разные периоды времени применялись четыре такие модели [Drolshagen et al., 2008]. Их характеристики приведены в табл. 5,4, в которую включена также модель ГОСТ 25645.128-85 «Вещество метеорное. Модель пространственного распределения».
Существуют также модели метеороидного вещества в окрестности других планет земной группы. В последние годы активно исследуется Марс космическими аппаратами NASA. Российская Федерация также планирует в ближайшее время запуск космического аппарата (КА) «Фобос-Грунт» к Марсу, одной из основных задач которого будет исследование спутника Марса Фобоса. Существуют модели метеороидного вещества вблизи Марса и Фобоса, которые позволяют более или менее реально определить степень риска столкновения КА с метеороидными частицами различных масс и размеров, оценить скорость такого столкновения и энергию удара. Одна из таких моделей развивается в Астрономическом институте Санкт-Петербургского государственного университета [Krivov et al., 1995].
<<< Назад 5.3. Свойства метеорных потоков и метеорных роев |
Вперед >>> Таблица 5.4. Метеороидные модели |
- Чувство юмора и щедрость — результаты полового отбора?
- Полученные результаты и их обсуждение
- Физиология цветового зрения: ранние результаты
- Глава 3.1. Реинтродукция в природу выращенных в неволе крупных хищных млекопитающих
- Е. Е. Антипина Археозоологические исследования: задачи, потенциальные возможности и реальные результаты
- 3. Результаты
- 6.3. Результаты эволюции: приспособленность организмов к среде обитания, многообразие видов. Доказательства эволюции жив...