Книга: Астероидно-кометная опасность: вчера, сегодня, завтра

8.2. Последствия ударов о поверхность

<<< Назад
Вперед >>>

8.2. Последствия ударов о поверхность

8.2.1. Образование кратеров и баллистических выбросов. Астероиды и кометы размером более нескольких сотен метров достигают поверхности

Земли практически без торможения, т. е. со скоростями от 11 до 72 км/с (средняя скорость ударов астероидов около 20 км/с). При ударе образуются сильные ударные волны в мишени и ударнике. Начальная скорость таких волн приблизительно равна половине скорости удара, а давление достигает сотен ГПа. Распространение ударных волн и следующих за ними волн разрежения приводит к образованию ударного кратера.

Не учитывая разницы в плотностях между мишенью и ударником и считая скорость удара равной 20 км/с, можно на основе законов подобия [Holsapple, 1993] построить зависимость размера земного кратера от размера ударника (рис. 8.5). Эта зависимость не является линейной, но в широком диапазоне размеров можно приблизительно считать, что размер конечного кратера примерно на порядок превышает размер ударника. Естественно, что в месте образования кратера давления, температуры и скорости перемещения грунта настолько велики, что нет смысла обсуждать поражающие факторы. Однако размер этой области невелик по сравнению с размером Земли.

Гораздо большую площадь охватывают выбросы из кратера. Принято считать, что размер сплошного покрова выбросов примерно в 2–3 раза больше размера кратера.


Рис. 8.5. Зависимость диаметра комплексного кратера (> 4 км) от диаметра ударника для Земли. Серая линия показывает размер промежуточного кратера, черная — конечного

Распределение фрагментов выбросов по размерам зависит от размера кратера и скорости выброса. Наиболее крупные километровые фрагменты обычно выбрасываются с небольшой скоростью и падают вблизи вала кратера. Более мелкие фрагменты способны пролететь десятки километров и создать вторичные кратеры в месте падения.

В настоящее время на Земле идентифицировано около 180 ударных кратеров с возрастом от нескольких десятков до 2 млрд лет и с размерами от нескольких метров до 200 км (http://www.unb.ca/passc/ImpactDatabase/). Крупнейшие земные кратеры — это Вредефорт (? 200 км, Южная Африка), Садбери (? 200 км, Канада), Чиксулуб (180 км, Мексика) и Попигай (100 км, Россия). Распределение земных кратеров по размерам показано на рис. 8.6. Уменьшение количества кратеров при увеличении их размера отражает распределение астероидов по размерам, а их уменьшение для малых размеров — экранирующие свойства земной атмосферы. Практически все кратеры размером менее 3 км образованы железными ударниками, а кратеры меньше 1 км обычно сгруппированы в поля рассеяния, т. е. созданы облаком фрагментов, образовавшихся при пролете в атмосфере. Понятно, что распределение на рис. 8.6 не отражает полного количества ударов в земной истории, по крайней мере, по трем причинам: во-первых, большая часть ударов приходится в океан; во-вторых, не все кратеры найдены; в-третьих, кратеры стираются с поверхности Земли в результате активных тектонических процессов, осадконакопления и эрозии.

Детальная картина процессов кратерообразования может быть найдена в ряде работ [Иванов, 1981; Мелош, 1994]. Приведем несколько примеров.


Рис. 8.6. Распределение земных кратеров по размерам

Кратер Метеор (кратер Бэрринджера, США) — первый достоверно идентифицированный земной кратер. Это простой кратер, имеющий чашеобразную форму диаметром 1,2 км и глубиной около 200 м (рис. 8.7). Кратер образовался в результате удара железного астероида размером 50–70 м. Ударник интенсивно разрушался во время движения в атмосфере. Многие фрагменты упали с небольшой скоростью и были позднее найдены вблизи кратера в виде метеоритов Каньона дьявола. Но в среднем струя фрагментов сохранила высокую (> 15 км/с) скорость, поэтому внутри кратера и на его валу найдены кусочки расплава (и мишени, и ударника), а также стишовит и коэсит — фазы высокого давления кварца.

Кратер Рис в Германии (см. рис. 8.8 на вклейке) диаметром около 25 км образовался 15 млн лет назад [St?ffler et al., 2002]. Уникальной чертой этого кратера являются его хорошо сохранившиеся выбросы, которые вблизи кратера (на расстояниях до 40 км) образуют двойной слой, а в дальней зоне (200–400 км) переходят в поля рассеяния тектитов. Крупные фрагменты выбросов и блоки обрушения вала (размером до 1 км) находятся между внутренним (10 км) и внешним (25 км) валами кратера.


Рис. 8.7. Кратер Метеор (Barringer Meteorite Crater, Arizona). Источник: http://interest-planet.ru/uploads/images/7/e/d/e/10/42855929e7.jpg

Попигайский ударный кратер диаметром 100 км возник 36 млн лет назад в Восточной Сибири [Масайтис и др., 1998]. Диаметр создавшего его ударника оценивается в 8 км при скорости 15 км/с; начальная кинетическая энергия ударника эквивалентна энергии 2 107 Мт ТНТ. Процесс образования кратера показан на рис. 8.9. Согласно расчетам [Иванов, 2005], переходный кратер к моменту 200 с после удара достиг диаметра около 50 км и глубины 18 км, которая примерно равна половине толщины земной коры. В дальнейшем за счет коллапса кратера его диаметр увеличился до 100 км, а глубина уменьшилась до 1–2 км. Выбросы из кратера (микрокриститы) найдены на расстояниях в тысячи км — в Атлантическом океане [Kettrup et al., 2003].

Кратер Чиксулуб (Мексика) образовался при ударе астероида размером ? 12–15 км в шельфовую зону Мексиканского залива 65 млн лет назад. Кратер имеет диаметр 180 км и погребен под километровым слоем осадочных пород. Образование кратера совпадает по времени с массовым вымиранием биоты, хотя причины этого вымирания до сих пор дискутируются (см. раздел 8.6.2).

8.2.2. Сейсмические эффекты. Ударные волны быстро затухают с увеличением расстояния от кратера и переходят в сейсмические. Для оценки амплитуды сейсмических волн можно использовать выражение для максимальной скорости смещения твердой породы Um, полученное для подземных ядерных взрывов [Родионов и др., 1971]: Um = 24(q1/3/R)1,75, где Um в см/с, q — энергия в кт ТНТ, R — расстояние в км. Необходимо иметь в виду, что как взрыв на поверхности, так и падение астероида менее эффективны, чем подземный взрыв.


Рис. 8.9. Последовательность событий при образовании модельного Попигайского кратера: а — исходное положение сферического ударника и слоистой мишени, б — 23 секунды после удара, переходная полость кратера достигает максимальной глубины около 19 км, в — 115 секунд после удара, коллапс переходной полости (подъем пород в центре за счет оседания бортов) приводит к образованию «переходного холма» высотой до 5 км, глубинные породы под кратером поднимаются выше уровня их исходного залегания, г — 200 секунд после удара, «переходной холм» растекается в поле тяжести, в то время как породы в глубине остановились за счет восстановления нормальной величины внутреннего трения, скорость приповерхностного растекания достигает 200 м/с, д — 300 секунд после удара, движение близко к остановке, е — 400 секунд после удара, кратер приобретает устойчивую конечную форму

Если мы заменим величину q на 0,1q (т. е. будем считать, что удар в 10 раз менее эффективен, чем взрыв), то на расстоянии 1000 км получим максимальную скорость смещения 6 см/с, если энергия удара составляет 106 Мт. Как следует из анализа разрушения типовых строений [Садовский, Костюченко, 1974], это значение скорости — критическое, так как при более высокой скорости происходит значительное повреждение строений или даже их полное разрушение. Экстраполяция формулы на более крупные удары, по-видимому, некорректна. Тем не менее, в расчетах удара, образовавшего кратер Чиксулуб (энергия удара порядка 108 Мт ТНТ), на расстоянии 300 км от центра кратера получены [Иванов, 2005] максимальные расчетные скорости грунта порядка 10 м/с и смещения 70–80 м, которые неплохо согласуются с предложенной оценкой.

Сравним сейсмический эффект от падения астероида с наиболее разрушительным, катастрофическим землетрясением. Для оценки этого эффекта мы используем величину магнитуды M по шкале Гутенберга — Рихтера [Садовский и др., 1987]: lg Es = 4,8 + (3/2)M, где Es — сейсмическая энергия в Дж, причем величина Es для подземного взрыва составляет приблизительно 0,05–0,1 от полной энергии взрыва. Подобные значения M получаются, если взять величину M = 6,5 для наиболее сильного взрыва на острове Амчитка на Алеутских островах с энергией E = 5 Мт [Gerstl and Zardecki, 1982] и затем использовать указанное соотношение. Для удара с полной энергией 106 Мт, принимая сейсмическую эффективность равной 0,05, по той же формуле получаем M = 9. Землетрясений с такими магнитудами не было зарегистрировано в течение последнего столетия. При землетрясении в Китае, для которого величина M = 8,5, погибло более 100 000 человек, и радиус зоны разрушений был больше 600 км. Это значение M близко к значению, полученному при использовании расчетной максимальной скорости. Для кинетической энергии 106 Мт площадь разрушения при M = 9 увеличивается до 1000 км. В такой зоне могут жить порядка 3 107 человек (при использовании средней плотности населения Земли).

Вопрос о сейсмической эффективности удара (доле кинетической энергии ударника, переходящей в энергию сейсмической волны) далек от своего разрешения. Согласно экспериментальным данным [Schultz and Gault, 1975], эта величина лежит в диапазоне 10-5–10-3. В работах [Мелош, 1994] и [Collins et al., 2005] берется некоторое среднее значение эффективности и конечное выражение для магнитуды выглядит следующим образом: M = (2/3) lg E — 5,87. Для E = 106 Мт = 4 1021 Дж получаем M = 8,5, т. е. несколько меньше, чем раньше.

Воздействие сейсмических волн на здания, сооружения, инициирование ими оползней, лавин и т. д. существенно зависит от расстояния до эпицентра, локальной и региональной геологии. Для учета этих факторов вводится понятие балльности или эффективной магнитуды [Collins et al., 2005]. Вообще говоря, возможность использования данных по землетрясениям для случая ударов космических тел не является очевидной, так как, во-первых, вычисленные магнитуды обычно намного выше магнитуд сильнейших землетрясений и, во-вторых, приведенные зависимости различны для разных районов Земли, что связано с существенной гетерогенностью земной коры.

Если характерный размер зоны разрушения порядка 10 км, то на распространение волны и развитие такой зоны влияет слоистая структура Земли с характерным вертикальным масштабом в несколько км и даже десятков км. Согласно данным, приведенным в работе [Краснопевцева, Щукин, 2004], в отдельных районах Северной Евразии скорость продольных волн Vp возрастает с глубиной от значений? 5 км/с в верхних слоях до 7 км/с на глубине? 40 км (граница Мохоровичича). В других районах имеют место промежуточные слои (на глубинах, скажем, 15–20 км) с пониженной скоростью Vp. В третьих районах такой слой располагается на глубинах 25–30 км или, наоборот, слои с повышенными значениями Vp имеются на глубинах 20–25 км. Таким образом, могут возникать эффекты волноводного распространения сейсмических волн. Наконец, в действительности эти низкоскоростные и высокоскоростные слои неоднородны по горизонтали из-за разбиения земной коры на отдельные блоки [Кочарян, Спивак, 2003].

Блочная структура земной коры существует во всех регионах. Так, в штатах Невада и Колорадо на участке длиной около 300 км, проходящем вдоль 39-й параллели, выявлено 9 довольно крупных разломов, простирающихся до границы Мохоровичича (расположенной в данном районе на глубине около 30 км) и наклоненных под различными углами [Niemi et al., 2004]. Квазивертикальные и квазигоризонтальные разломы, заполненные раздробленной породой, могут существенно изменить параметры сейсмической волны за разломом по сравнению с амплитудой до разлома.

Удары в горячие [Ivanov and Melosh, 2003] или напряженные [Витязев, Печерникова, 1997] точки литосферы могут приводить к дополнительным разрушающим эффектам. Таким образом, при анализе сейсмической опасности для данного объекта необходимо знать геологическую структуру вокруг объекта на довольно больших расстояниях и глубинах и рассматривать различные места возможного падения около него.

8.2.3. Выброс пыли и климатически активных газов в атмосферу. Рассмотренные выше эффекты носят локальный или, для самых крупных ударов, региональный характер. К глобальным последствиям могут привести выбросы из кратера пыли и образование климатически активных газов. Такие последствия могут длиться десятилетиями и существенно изменить окружающую среду на Земле и, возможно, ее климат. Увеличение количества парниковых газов в атмосфере (в первую очередь — воды и углекислого газа) приводит к нагреву поверхности Земли, а блокировка солнечного излучения пылью и аэрозолями (эффект, хорошо известный в вулканологии) — к остыванию. Суммарный эффект определяется, во-первых, общим количеством выброшенных газов и пыли и, во-вторых, временем их жизни в атмосфере (которое, в свою очередь, зависит от размера частиц, их химического состояния, способности коагулировать и т. д.). Если ответ на первый вопрос достаточно ясен (см. ниже), второй является предметом дискуссий, в которых ответы колеблются от резкого потепления и полного таяния льдов до бесконечной ядерной зимы.

Одной из основных проблем определения степени загрязнения атмосферы после удара является проблема определения максимальной высоты облаков пыли. Для предсказания эволюции облака, вызванного падением на поверхность Земли космического тела, можно использовать экспериментальные результаты по подъему облаков ядерных взрывов (см., например, [Glasstone and Dolan, 1977; Гордейчик и др., 1997]), применяя закон подобия динамики всплывающего нагретого объема — термика (высота равновесия h пропорциональна E1/4). Однако простой закон подобия для больших мощностей может приводить к существенным ошибкам из-за влияния неоднородности атмосферы. Кроме того, при ударе существенную роль в распространении пыли может играть наличие следа, оставленного при пролете в атмосфере. Так, энергия Тунгусского взрыва в 1908 г. была примерно в 5 раз меньше, чем энергия самого крупного ядерного взрыва в атмосфере, проведенного в 1961 г. на Новой Земле. Результаты расчетов для Тунгусского явления с учетом следа и разрушения в атмосфере приведены в работе [Shuvalov and Artemieva, 2002a]. В этом случае на начальной стадии облако взрыва (воздух с продуктами абляции и разрушения тела) по форме более сходно с длинным, турбулизованным цилиндром. Позднее в верхних слоях атмосферы образуется плюм, который, падая на более плотные слои атмосферы, вызывает ее сильные возмущения, а пыль достаточно быстро разносится на тысячи километров.

Для Тунгусского события в облако взрыва не вовлекалась пыль, выброшенная из кратера, так как такового не было. Однако с увеличением энергии ударника кратер возникает, и происходит выброс пыли из него, причем ее количество увеличивается с ростом диаметра тела и размера кратера. Размеры частиц, образующихся при ударе, увеличиваются с увеличением размера ударника [Melosh and Vickery, 1991; O’Keefe and Ahrens, 1982b]. В последней работе были проведены численные расчеты удара для условий К — Т-границы и было показано, что масса выброшенного вещества в 100 раз больше массы ударника, но масса субмикронной пыли составляет лишь 10 % массы ударника. Аналогичные результаты были получены и для ядерных взрывов: масса пыли, вынесенной пылевым слоем, составляет 300 Мт на 1 Мт ТНТ энергии, причем субмикронная фракция пыли составляет 8 % или 24 Мт массы на 1 Мт энергии [National Research Council, 1985]. Именно эти мельчайшие частицы остаются в воздухе длительное время и распространяются вокруг всей Земли в течение нескольких недель [Covey et al., 1990].

Характерный массовый коэффициент поглощения излучения Солнца субмикронной пылью составляет примерно 3 104 см2/г (для более крупных частиц он падает примерно обратно пропорционально радиусу частиц). Оценочные значения средней массовой концентрации m и оптической толщины ?, приведенные в работе [Toon et al., 1994], можно аппроксимировать простыми зависимостями: m = 10-7E, ? = 10-5E, где энергия удара E измеряется в Мт ТНТ, массовая концентрация пыли, поднятой в стратосферу, — в г/см2, а оптическая толщина субмикронной пыли безразмерна. Зависимость m(E) определена по данным испытаний ядерного оружия. Оптическая толщина атмосферы после извержения вулкана Пинатубо в 1991 г. составляла 10-1, что соответствует энергии удара 104 Мт. Оптическая толщина облака субмикронной пыли после К — Т-удара достигла единицы, т. е. ослабление солнечного излучения было существенным (но достаточно кратковременным).

Доля T солнечного излучения, проникающего до поверхности Земли сквозь слой пыли, обычно представляется функцией оптической толщины ?, а именно: T = A exp(-?/b) = A exp(-10-5/b), где A = 0,9, b = 6,22 для пыли; A = 0,8, b = 1,03 для дыма. Дым пропускает меньше солнечного излучения, чем пыль, потому что поглощает много света. В работе [Covey et al., 1990] исследовано поведение облака, образовавшегося при ударе с энергией 6 105 Мт. Согласно этим расчетам, понижение средней температуры составляет 8 К в течение первых двух недель после удара. Через 30 дней после удара пыль распределяется глобально и температуры восстанавливаются до первоначального уровня.

При энергии ударника, падающего в океан, равной 105 Мт, удельная масса воды, выброшенной в атмосферу, превышает содержащуюся в ней в обычных условиях (0,001 г/см2). При энергии 108 Мт удельная масса воды достигает уже 1 г/см2. Но, согласно работе [Toon et al., 1994], в диапазоне высот 16–45 км и выше 45 км не может содержаться более 0,2 г/см2 и 2 г/см2 соответственно, так как начнется конденсация. Это верхние оценки, поскольку водяной пар сильно поглощает и излучает в инфракрасном диапазоне. Это дополнительный фактор, ведущий к снижению температуры верхней атмосферы (примерно до 215 К) и интенсивным дождям. Богатая водой атмосфера неустойчива к вертикальным возмущениям, в результате чего возникает интенсивная конвекция.

Увеличение альбедо за счет формирования облаков с каплями и с льдинками приводит к снижению температуры поверхности суши Земли, океана и нижних слоев атмосферы. Это уменьшает конвекцию в нижних слоях. С другой стороны, парниковый эффект увеличивает температуру. Поэтому даже знак эффекта до сих пор не ясен. Процессы инжекции воды в атмосферу и последствия этого требуют дальнейшего изучения.

Ударные волны, образующиеся при пролете астероида и/или в результате расширения послеударного плюма и распространяющиеся со скоростями > 2 км/с, нагревают атмосферу до нескольких тысяч градусов, что способствует образованию токсичных окислов азота (NO, NO2, HNO3) [Prinn and Fegley, 1987; Zahnle, 1990] и приводит к разрушению озонового слоя Земли [Turco, 1981]. Пожары, возникающие под действием излучения плюма или в результате возвращения в атмосферу высокоскоростных выбросов, заполняют нижнюю атмосферу дымом и токсичными газами. При ударах в осадочные породы (например, известняки и доломиты) в атмосферу выбрасывается огромное количество углекислого газа (результат дегазации кальцита) и серы. Если первый, являясь парниковым газом, может привести к существенному потеплению, то соединения серы, наоборот, приводят к уменьшению температуры поверхности. Суммарный эффект определяется массовым соотношением между этими химическими соединениями и их способностью оставаться в атмосфере длительное время (см. раздел 8.6.2).

Подъем пыли в пустынных районах. Существует еще один механизм выброса пыли в атмосферу — эрозия высокоскоростными ветрами, созданными ударной волной, усиленная вследствие так называемого «эффекта теплого слоя». Эта эрозия, по-видимому, наиболее интенсивна при «взрывах» комет и астероидов над полупустынными районами и песчаными пустынями, покрывающими значительную часть поверхности Земли. Теплый слой — это слой нагретого воздуха над поверхностью Земли, который может образовываться за счет нагрева поверхности излучением, возникшим при ударе. Низкий коэффициент теплопроводности песчаного грунта способствует быстрому повышению температуры частиц поверхностных слоев грунта. Естественно, что нагревается также воздух между песчаными частицами и над ними. Взаимодействие ударной волны с теплым слоем приводит к образованию предвестника перед фронтом волны и глобальной перестройке всего течения.

Эффект теплого слоя был обнаружен в середине 1950-х гг. при ядерных испытаниях и в специальных моделирующих опытах [Садовский, Адушкин, 1988]. В дальнейшем этот эффект изучался теоретически, оценками и численными расчетами, а также экспериментальными лабораторными исследованиями [Таганов, 1960; Немчинов и др., 1987, 1989; Артемьев и др., 1987, 1988, 1989; Бергельсон и др., 1987, 1989]. Он был исследован также в работах [Shreffler and Christian, 1954; Mirels, 1988; Reichenbach and Kuhl, 1988]. Взаимодействие ударной волны с теплым слоем приводит к возникновению вихревой структуры перед основной ударной волной. Это видно из рис. 8.10, где представлены результаты расчета развития взрывной волны для тела диаметром 200 м.



Рис. 8.10. (а) Распределение изохор в атмосфере после вертикального падения ледяного тела диаметром 200 м и скоростью 50 км/с в момент времени t = 1 с. (б) Положения начальных маркеров теплого слоя в тот же момент времени

На рис. 8.10 а показана форма ударной волны. Видно, как перед фронтом возникает предвестник. На рис. 8.10 б для того же момента времени приведены положения маркеров, предварительно размещенных в теплом слое в начальный момент времени. Вихревое течение внутри предвестника приводит к отрыву вещества теплого слоя от поверхности Земли. При этом нагретый газ захватывает частицы пыли, взвешенные в воздухе, и может поднять их на большую высоту.

Размеры предвестника и вихря намного больше толщины теплого слоя и оказываются порядка длины пути, пройденного ударной волной по теплому слою. Более того, в плоском случае при постоянной скорости поршня, генерирующего волну, задача автомодельна, и размер предвестника со временем неограниченно растет и, в конце концов, его длина и высота намного превосходят толщину теплого слоя и последняя перестает играть роль. Таким образом, очень малое возмущение может вызвать глобальную перестройку течения.

Были проведены лабораторные эксперименты по взаимодействию ударной волны с теплым слоем над запыленной поверхностью. Сферическая волна создавалась лазерным импульсом, метеорный след моделировался электровзрывом тонкой проволочки. Нагрев покрытой тонкой графитовой пылью проволочки производился другим лазером. Одновременно проводились численные эксперименты с использованием программы SOVA, где размер частиц принимался равным 1 мкм, а энергия лазерного взрыва — 30 Дж. Результаты расчетов показали, что частицы поднимаются на высоту 0,2–0,4 см, заполняя область за косой волной (к моменту времени 5 мкс волна проходит по теплому слою? 1,6 см). Эти эксперименты и расчеты использовались для моделирования возникновения пыльных бурь [Rybakov et al., 1997] после ударов небольших метеороидов на Марсе, где в силу разреженности атмосферы сравнительно небольшие метеороиды (порядка 1 м) достигают поверхности.

Для Земли удар по поверхности возможен для тел размером более ? 50–400 м (критический размер разный для кометных, каменных и железных тел). Однако даже если тело не достигло поверхности, «взрыв» над пустынной поверхностью («Тунгуска» не в тайге, а в пустыне) может вызвать подъем пыли за счет импульсного ветра — движения высокоскоростной струи перед ударной волной вдоль поверхности с теплым слоем. Заметим, что подъем частиц пыли ветром происходит не только за счет трения, но и за счет сальтации, т. е. удара увлеченных воздухом частиц, выбивающих при своем падении новые частицы или упруго отскакивающих снова в поток.

В последние годы были предприняты довольно интенсивные поиски кратеров в пустынных районах Земли. Paillou et al. [2003], используя радарные изображения со спутников, в юго-восточной части Ливийской пустыни обнаружили двойную кратерную структуру, частично скрытую песчаными наносами. Полевые исследования показали, что каждый из этих кратеров имеет диаметр около 10 км и возраст менее 140 млн лет. В юго-западной части Египетской пустыни на площади более 4500 км2 было обнаружено 13 кратеров диаметром от 20 м до 1 км [Paillou et al., 2004]. Вряд ли столь большое кратерное поле было создано одним космическим телом. Скорее всего, оно было вызвано его фрагментацией еще до входа в атмосферу.

Из 180 найденных на Земле ударных кратеров в Африке находится 17. В пустынных районах Сахары, безусловно, еще будут найдены кратеры, скрытые под песчаными наносами. Ранее в Саудовской Аравии, в пустыне Руб-аль-Кали, была найдена группа из 4 кратеров (Вабар) диаметром от 17 до 100 м в области размером 400 ? 200 м [Holm, 1962]. На месте падения было обнаружено метеоритное железо. Люминесцентный анализ показал очень небольшой возраст этого падения — всего 290 лет [Prescott et al., 2004]. Моделирование песчаных облаков, вызванных ударами в песчаные пустыни Земли или «взрывами» над ними и эрозией ветровыми потоками, тем более с учетом действия светового излучения и эффекта теплого слоя, пока не проводилось.

<<< Назад
Вперед >>>

Генерация: 1.219. Запросов К БД/Cache: 0 / 0
Вверх Вниз