Книга: Сейчас. Физика времени

Будущее физики

<<< Назад
Вперед >>>

Будущее физики

Иногда мне хочется, чтобы Платон оказался прав и все эти вопросы можно было решить в ученых беседах и чистых размышлениях, а абсолютным арбитром истины стал разум. Но история физики говорит, что Платон ошибался. Нам необходимо сохранять контакт с реальным физическим миром, как Антею нужно было касаться земли.

Квантовая запутанность уже с нами и никуда не денется. «Жуткое дальнодействие» уже не пустые рассуждения, а экспериментальный результат, продемонстрированный Фридманом и Клаузером, а также многочисленными последующими экспериментами. Несмотря на то что мы не можем передавать вещество или информацию быстрее скорости света, мгновенный коллапс волновой функции – неудобная проблема, наводящая на мысль, что какой-то другой подход мог бы выявить новые, неожиданные аспекты. Я лелею надежду, что кто-нибудь сумеет переформулировать квантовую физику так, чтобы исчезла нужда в амплитудах вероятности. Когда я учился в Беркли, теоретик Джеффри Чу попытался сделать это с помощью подхода, который он называл «теорией s-матриц». В некоторых важных отношениях его работа привела к созданию современной стандартной модели; цель не была достигнута, и устранить квантовые амплитуды и волновые функции не удалось. Тем временем дальнейшие работы по поиску совершенно новых подходов были отложены в долгий ящик из-за необычайного успеха стандартной модели элементарных частиц. Стандартная модель – лучшая за всю историю физики теория, если говорить о ее способности делать точные предсказания, которые затем подтверждаются экспериментально[275].

Так зачем же что-то менять в теории квантовой физики, если она так замечательно работает? Несмотря на успех стандартной модели, думаю, эта теория еще будет переформулирована. Когда это произойдет, амплитуды перестанут коллапсировать со сверхсветовой скоростью, а позитроны (осмелюсь предположить) не будут больше считаться ни дырками в бесконечном море частиц с отрицательной энергией, ни электронами, движущимися назад во времени. Это был просто удобный способ рассматривать их в контексте пространственно-временных диаграмм, где течение времени полностью отсутствует.

Еще одним огромным шагом в развитии квантовой физики, к тому же отчаянно необходимым, должна стать концепция измерения. Мало кто из физиков на самом деле верит, что для измерения действительно необходимо человеческое сознание. Шрёдингер привел убедительный пример с котом. Но что же такое измерение? Роджер Пенроуз утверждает, что существует некий микромеханизм, часть природы, которая проводит множество измерений. Квантовое состояние, приведшее к возникновению в процессе Большого взрыва структуры, которую мы наблюдаем, не должно было ждать, пока Пензиас и Уилсон откроют реликтовое микроволновое излучение, а Млечный Путь не застыл неподвижно во Вселенной до того момента, когда моя группа вычислила скорость его движения. (Кстати, в какой момент он должен был двинуться – когда аппарат измерил анизотропию или когда я взглянул на данные?) Луна была на небе и до того, как Эйнштейн посмотрел на нее. Какой-то естественный механизм уже заставил волновую функцию – суперпозицию бесконечного числа возможных вселенных – коллапсировать задолго до появления человека (или живого мира).

Развитие техники сделало экспериментальные исследования в области теории измерений намного более реальными. Давно уже для создания запутанных фотонов не нужны пучки атомов кальция; их можно получать, освещая лазерным лучом специальный кристалл, к примеру BBO (бета-борат бария, ?-BaB2O4) или KTP (титанил-фосфат калия, KTiOPO4). В результате эксперименты по исследованию квантовых измерений движутся вперед семимильными шагами.

Один из наиболее интересных результатов получен при изучении «отложенного выбора», когда сначала собираются измерения по всем состояниям поляризации и только потом полученные данные анализируются. В подобных экспериментах проверяется, действительно ли измерение неразрывно связано с присутствием человека и его решением, и результаты указывают, что это не так. Хорошо, в этом нет ничего удивительного, но для настоящего прорыва необходимо найти что-нибудь неожиданное, какой-то сюрприз, каким стал для физиков в свое время эксперимент Майкельсона?Морли.

Новые лазерные методы дали возможность тестировать запутанность на гораздо больших расстояниях, чем те, с которыми пытались работать Фридман и Клаузер. На первой полосе New York Times от 22 октября 2015 года был заголовок: «Прости, Эйнштейн, но “жуткое дальнодействие”, кажется, реально». Группа исследователей из Делфтского технического университета в Нидерландах проверила сверхсветовые эффекты, связанные с запутанностью двух электронов на двух разных концах университетского кампуса, то есть на расстоянии, превышающем километр. И вновь копенгагенская интерпретация с ее сверхсветовым действием могла праздновать победу.

Наблюдение гравитационной волны в 2015 году аппаратом LIGO позволяет предложить третье испытание теории сейчас – теории возникновения времени. Когда две черные дыры сливаются воедино и коллапсируют, вокруг них локально должно генерироваться новое время, что можно заметить по возрастанию задержки между предсказанным и наблюдаемым сигналом. Единственная волна, которую пока удалось зарегистрировать, слишком неопределенна для проверки этого предсказания, но если бы нам удалось пронаблюдать множество подобных событий – или более близкое событие с более мощным сигналом, то присутствие или отсутствие этой задержки могло подтвердить или опровергнуть теорию сейчас.

<<< Назад
Вперед >>>

Генерация: 0.382. Запросов К БД/Cache: 3 / 1
Вверх Вниз