Книга: Математика космоса [Как современная наука расшифровывает Вселенную]

* * *

<<< Назад
Вперед >>>

* * *

Следующую тысячу лет, а то и больше, Европа все свое внимание посвящала вопросам теологическим и философским, а представления о мире природы черпала в основном из трудов Аристотеля, созданных примерно за 350 лет до Рождества Христова. Вселенная считалась геоцентрической, и все в ней вращалось вокруг неподвижной Земли. Факел исследований в астрономии и математике переместился в арабский мир, в Индию и Китай. Однако с зарей итальянского Возрождения этот факел вновь был передан в Европу. После этого ведущие роли в развитии астрономического знания сыграли три гиганта науки: Галилей, Кеплер и Ньютон, а группа поддержки у них была поистине громадной.

Галилей знаменит тем, что усовершенствовал телескоп и обнаружил с его помощью, что на Солнце есть пятна, у Юпитера есть (по крайней мере) четыре луны, Венера проходит такие же фазы, как Луна, а Сатурн выглядит как-то странно — позже странности его внешнего вида получили объяснения в виде системы колец. Полученные данные заставили его отвергнуть геоцентрическую теорию и принять соперничающую с ней гелиоцентрическую теорию Николая Коперника, в которой планеты и Земля вращаются вокруг Солнца; из-за этого у Галилея возникли проблемы с римско-католической церковью. Но он также сделал на первый взгляд более скромное, но в конечном итоге более важное открытие: открыл математическую закономерность в движении таких объектов, как пушечные ядра. Здесь, на Земле, свободно движущееся тело либо ускоряется (при падении), либо замедляется (при подъеме) на величину, одинаковую за фиксированный, небольшой отрезок времени. Короче говоря, ускорение тела постоянно. Поскольку точных часов в его распоряжении не было, Галилей наблюдал эти эффекты, катая шары по слегка наклонным желобам.

Еще одна ключевая фигура того времени — Кеплер. Его учитель и начальник Тихо Браге в свое время провел очень точные измерения положения Марса. После смерти Тихо Кеплер унаследовал не только его положение придворного астронома при императоре Священной Римской империи Рудольфе II, но и продолжил наблюдения и занялся вычислением точной формы орбиты Марса. После 50 неудачных попыток он рассчитал, что орбита имеет форму эллипса, то есть овала, напоминающего слегка сплюснутую окружность. При этом Солнце находится в особой точке этого эллипса — в его фокусе.

Древнегреческие геометры знали эллипсы и определяли их как сечение конуса плоскостью. В зависимости от наклона плоскости относительно оси конуса «конические сечения» включают в себя окружности, эллипсы, параболы и гиперболы.

Когда планета движется по эллипсу, расстояние от нее до Солнца меняется. Приближаясь к Солнцу, планета ускоряется; удаляясь от Солнца, замедляется. Немного удивительно, что все эти эффекты в сумме умудряются создать орбиту в точности одинаковую по форме с обеих сторон. Кеплер этого не ожидал, и его долгое время преследовала мысль, что эллипс в ответе, должно быть, получился по ошибке.


Форма и размер эллипса определяются двумя длинами: длиной большой оси, представляющей собой самый длинный отрезок прямой, соединяющий две точки на эллипсе, и длиной малой оси, которая перпендикулярна большой. Окружность — это разновидность эллипса, для которой две указанные длины равны; в этом случае они обе равны диаметру окружности. В астрономии радиус считается более удобной мерой. Так, радиус круговой орбиты равен расстоянию от планеты до Солнца и соответствующие величины для эллипса называют большим радиусом и малым радиусом. К этим же величинам относятся более громоздкие термины «большая полуось» и «малая полуось», поскольку они представляют собой половинки большой и малой оси. Менее интуитивно понятна, но очень важна еще одна характеристика эллипса: его эксцентриситет — это количественное отражение формы эллипса, того, насколько он длинный и тонкий. Эксцентриситет окружности равен нулю, а для фиксированной длины большой полуоси он стремится к единице, по мере того как длина малой полуоси стремится к нулю[9].

Размер и форму эллиптической орбиты можно охарактеризовать двумя числами. Как правило, выбирают большую полуось и эксцентриситет. Малую полуось можно вычислить исходя из этих двух параметров. Большая полуось орбиты Земли составляет 149,6 миллиона километров, ее эксцентриситет равен 0,0167; при этом малая полуось равняется 149,58 миллиона километров, так что орбита очень близка к круговой, на что указывает и малый эксцентриситет. Плоскость земной орбиты имеет особое название — эклиптика.

Пространственное положение любой другой эллиптической орбиты вокруг Солнца можно охарактеризовать тремя дополнительными числами; все три — угловые величины. Одна из этих величин представляет собой наклон орбитальной плоскости к плоскости эклиптики. Вторая величина, по существу, дает направление большой оси орбиты в этой плоскости. Третья дает направление прямой, по которой пересекаются эти две плоскости. Наконец, нам нужно знать, где именно на орбите в данный момент располагается планета, для чего потребуется еще один угол. Таким образом, для того, чтобы определить орбиту планеты и ее положение на этой орбите, нам требуется два числа и четыре угла — шесть орбитальных элементов. Главной целью ранней астрономии было вычислить орбитальные элементы каждой планеты и каждого астероида, которые удалось обнаружить. Имея эти числа, можно предсказывать будущее положение объекта, по крайней мере до тех пор, пока совместное воздействие других тел не приведет к существенному возмущению орбиты.

Со временем Кеплер смог сформулировать набор из трех элегантных математических закономерностей, которые в настоящее время называются законами планетарного движения. Первый из них гласит, что орбита любой планеты представляет собой эллипс, в одном из фокусов которого находится Солнце. Второй — что отрезок прямой, соединяющий Солнце с планетой, за равные промежутки времени заметает равные площади. А третий говорит нам, что квадрат периода обращения пропорционален кубу расстояния.

<<< Назад
Вперед >>>

Генерация: 0.300. Запросов К БД/Cache: 0 / 0
Вверх Вниз