:

<<<
>>>
----
· #1

J.Loewen, Lies My Teacher Told Me: Everything Your American History Textbook Got Wrong (New York: Touchstone Press, 2008).

· #2

J.Baldwin, Notes of a Native Son (Boston: Beacon Press, 1955).

· #3

N.Cousins, Saturday Review, 15 , 1978.

· #4

P.Ward, Impact from the Deep. Scientific American ( 2006). , , , Discover 90- .

· #5

Santayana, The Life of Reason, Five Volumes in One (1905).

· #6

, - , , - . , , ( , ). , , , , , . - , , , : - , 4 . , 1990- , . , . : R.Fortey, Life: A Natural History of the First Four Billion Years of Life on Earth (New York: Random House, 1997).

· #7

, ( ), , : M.J.Rudwick, The Meaning of Fossils: Episodes in the History of Palaeontology (London: Science History Publications, 1972). , , , . XIX XIX , , . , , .

· #8

, . . , , ( , ), . : A.Desmond, Darwin (New York: Warner Books, 1992).

· #9

M.Rudwick, Georges Cuvier, Fossil Bones, and Geological Catastrophes: New Translations and Interpretations of the Primary Texts (University of Chicago Press, 1997).

· #10

1998. , , . Nature 3 1998. . . .

· #11

. . Phanerozoic Trends in Global Diversity of Marine Invertebrates, (Science 321 (2008): 97).

· #12

Nick Lane, The Vital Question: Why Is Life the Way It Is? (London: Profile Books, 2015); : / ; . . .. .: ACT: CORPUS, 2014. (); Power. Sex, Suicide: Mitochondria and the Meaning of Life (Oxford: Oxford University Press, 2005); , , : . .: , 2016. Oxygen: The Molecule That Made the World (Oxford: Oxford University Press, 2002).

· #13

. . stratigraphy.org-upload-bak-defs.htm.

· #14

; , , , , , . : M.Rudwick, Earth's Deep History: How It Was Discovered and Why It Matters (Chicago: University of Chicago Press, 2014).

· #15

, : , (, , ). , . , . , . M.Rudwick, The Meaning of Fossils: Episodes in the History of Paleontology (London: Science History Publications, 1972).

· #16

. . , W.B.N.Berry, Growth of a Prehistoric Time Scale (Boston: Blackwell Scientific Publications, 1987): 202.

· #17

J.Burchfield, Tire Age of the Earth and the Invention of Geological Time, D.J.Blundell and A.C.Scott, eds., Lyell: the Past is the Key to the Present (London, Geological Society of London, 1998), 13743.

· #18

XIX , . . : M.Rudwick, The Great Devonian Controversy: The Shaping of Scientific Knowledge Among Gentlemanly Specialists (Chicago: University of Chicago Press, 1985).

· #19

K.A.Plumb, New Precambrian Time Scale, Episode 14, no. 2 (1991): 13440.

· #20

A.H.Knoll, et al., A New Period for the Geologic Time Scale, Science 305, no. 5684 (2004): 62122.

· #21

, , , , , , . : E.A.Petigura, A.W.Howard, G.W.Marcy, Prevalence of Earth-Size Planets Orbiting Sun-Like Stars, Proceedings of the National Academy of Sciences of the United States of America 110, no. 48 (2013). doi:10.1073-pnas.1319909110, NASA www. nasa.gov-mission_pages-kepler-news-kepler20130103.html.

· #22

NASA (science1.nasa.gov-science-news-science-at-nasa-2003-020ct_goldilocks-are). : S.Dick, Extraterrestrials and Objective Knowledge A.Tough, When SETI Succeeds: The Impact of High-Information Contact (Foundation for the Future, 2000): 4748.

· #23

, : G.Marcy et al. Observed Properties of Exoplanets: Masses, Orbits and Metallicities, Progress of Theoretical Physics Supplement no. 158 (2005): 2442.

· #24

D.McKay et al., Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite AL84001, Science 273, no. 5277 (1996): 924-30.

· #25

P.Ward, Life as We Do Not Know It: The NASA Search for and Synthesis of Alien Life (New York: Viking, 2005); P.Ward and S.Benner, Alternative Chemistry of Life, in W.Sullivan and J.Baross, eds. Planets and Life: The Emerging Science of Astrobiology (Cambridge: Cambridge University Press, 2008): 537-44.

· #26

W.K.Hartmann and D.R.Davis, Satellite-Sized Planetesimals and Lunar Origin, Icarus 24, no. 4 (1975): 504-14; R.Canup and E.Asphaug, Origin of the Moon in a Giant Impact Near the End of the Earths Formation, Nature 412, no. 6845 (2001): 708-12; A.N.Halliday, Terrestrial Accretion Rates and the Origin of the Moon, Earth and Planetary Science Letters 176, no. 1 (2000): 1730; D.Stoffler and G.Ryder, Stratigraphy and Isotope Ages of Lunar Geological Units: Chronological Standards for the Inner Solar System, Space Science Reviews 96 (2001): 954.

· #27

A.T.Basilevsky and J.W.Head, The Surface of Venus, Reports on Progress in Physics 66, no. 10 (2003): 1699 1734; J.F.Kasting, Runaway and Moist Greenhouse Atmospheres and the Evolution of Earth and Venus, Icarus 74, no 3 (1985): 47294.

· #28

D.H.Grinspoon and M.A.Bullock, Searching for Evidence of Past Oceans on Venus, Bulletin of the American Astronomical Society 39 (2007): 540.

· #29

: G.B.Daliymple, The Age of the Earth (Redwood City: Stanford University Press, 1994). The Age of the Earth in the Twentieth Century: A Problem (Mostly) Solved, Special Publications, Geological Society of London 190 (2001): 20521.

· #30

Nature 1988. (Impact Frustration of the Origin of Life, Nature 331, no. 6157 (1988): 61214.) , : K.Zahnle et al., Cratering Rates in the Outer Solar System, Icarus 163 (2003): 26389; F.Tera et al., Isotopic Evidence for a Terminal Lunar Cataclysm, Earth and Planetary Science Letters 22, no. 1 (1974): 121. . (, ): W.F.Bottke et al., An Archaean Heavy Bombardment from a Destabilized Extension of the Asteroid Belt, Nature 485 (2012): 7881; G.Ryder et al., Heavy Bombardment on the Earth at -3.85 Ga: The Search for Petrographic and Geochemical Evidence, in Origin of the Earth and Moon, R.M.Canup and K.L.Tighter, eds. (Tucson: University of Arizona Press, 2000): 47592.

· #31

, www.amnh.org-leam-pd-earth-pdf-evoliition_earth_atmosphere.pdf -, . : K.Zahnle et al., Earths Earliest Atmospheres, Cold Spring Harbor Perspectives in Biology 2, no. 10 (2010).

· #32

, - . - . , , , . : www.breadandbutterscience.com/CATIS.pdf.

· #33

. - . : Walker, Carbon Dioxide on the Early Earth, Origins of Life and Evolution of the Biosphere 16, no. 2 (1985): 11727. ( ), : D.H.Rothman, Atmospheric Carbon Dioxide Levels for the Last 500 Million Years, Proceedings of the National Academy of Sciences 99, no. 7 (2001): 416771, D.Royer et al., CO, as a Primary Driver of Phanerozoic Climate, GSA Today 14, no. 3 (2004): 415. , , : L.Kump et al., The Earth System, 3rd ed. (Upper Saddle River, NJ: Prentice Hall, 2009). . , , , .

· #34

(P.Ward, Out of Thin Air. Washington, D.C.: Joseph Henry Press, 2006). : R.A.Berner, Models for Carbon and Sulfur Cycles and Atmospheric Oxygen: Application to Paleozoic Geologic History, American Journal of Science 287, no. 3 (1987): 17790. : L.R.Kump, Terrestrial Feedback in Atmospheric Oxygen Regulation by Fire and Phosphorus, Nature 335 (1988): 15254; L.R.Kump, Alternative Modeling Approaches to the Geochemical Cycles of Carbon, Sulfur, and Strontium Isotopes, American Journal of Science 289 (1989): 390410; L.R.Kump, Chemical Stability of the Atmosphere and Ocean, Global and Planetary Change 75, no. 12 (1989): 12336; L.R.Kump and R.M.Garrels, Modeling Atmospheric O2 in the Global Sedimentary Redox Cycle, American Journal of Science 286 (1986): 33670.

· #35

W.F.Ruddiman and J.E.Kutzbach, Plateau Uplift and Climate Change, Scientific American 264, no. 3 (1991): 6674, and M.Kuhle, The Pleistocene Glaciation of Tibet and the Onset of Ice Ages An Autocycle Hypothesis, Geojournal 17 (4) (1998): 58195; M.Kuhle, Tibet and High Asia: Results of the Sino-German Joint Expeditions (I), Geojournal 17, no. 4 (1988).

· #36

: R.A.Berner, A New Look at the Long Term Carbon Cycle, GSA Today 9, no. 11 (1999): 16; R.A.Berner, Modeling Atmospheric Oxygen over Phanerozoic Time, Geochimica et Cosmochimica Acta 65 (2001): 68594; R.A.Berner, The Phanerozoic Carbon Cycle (Oxford: Oxford University Press, 2004), 150.; R.A.Berner, The Carbon and Sulfur Cycles and Atmospheric Oxygen from Middle Permian to Middle Triassic, Geochimica et Cosmochimica Acta 69, no. 13 (2005): 321117; R.A.Berner, GEOCARBSULF: A Combined Model for Phanerozoic Atmospheric Oxygen and Carbon Dioxide, Geochimica et Cosmochimica Acta 70 (2006): 56535664; R.A.Berner and Z.Kothavala, GEOCARB III: A Revised Model of Atmospheric Carbon Dioxide over Phanerozoic Time, American Journal of Science 301, no. 2 (2001): 182204.

· #37

, www. ted.com-talks-markrothsuspendedanimation.

· #38

T.Junod, The Mad Scientist Bringing Back the Dead Really, Esquire.com, December 2, 2008.

· #39

. . .

· #40

E.Blackstone et al., II S Induces a Suspended Animation-Like State in Mice, Science 308, no. 5721 (2005): 518.

· #41

D.Smith et al., Intercontinental Dispersal of Bacteria and Archaea by Transpacific Winds, Applied and Environmental Microbiology 79, no. 4 (2013): 113439.

· #42

K.Mailer and D.Stevenson, Impact Frustration of the Origin of Life, Nature 331 (1988): 61214.

· #43

E.Schrodinger. What Is Life? (Cambridge: Cambridge University Press, 1944), 90.

· #44

P.Davies. The Fifth Miracle: The Search for the Origin and Meaning of Life. (New York: Penguin Press, 1995), 260.

· #45

P.Ward. Life as We Do Not Know It (New York: Viking Books, 2005).

· #46

W.Bains, The Parts List of Life, Nature Biotechnology 19 (2001): 4012; W.Bains, Many Chemistries Could Be Used to Build Living Systems, Astrohiology, 4, no. 2 (2004): 13767; and N.R.Pace, The Universal Nature of Biochemistry, Proceedings of the National Academy of Sciences of the Unites States of America 98, no. 3 (2001): 805808; S.A.Benner et al., Setting the Stage: The History, Chemistry, and Geobiology Behind RNA, Cold Spring Harbor Perspectives in Biology 4, no. 1 (2012): 719; M.P.Robertson and G.F.Joyce, The Origins of the RNA World, Cold Spring Plarbor Perspectives in Biology 4, no. 5 (2012); C.Anastasi et al., RNA: Prebiotic Product, or Biotic Invention? Chemistry and Biodiversity 4, no. 4 (2007): 72139; T.S.Young and P.G.Schultz, Beyond the Canonical 20 Amino Acids: Expanding die Genetic Lexicon, The Journal of Biological Chemistry 285, no. 15 (2010): 11039-44.

· #47

F.Dyson. Origins of Life, 2nd ed. (Cambridge: Cambridge University Press, 1999), 100.

· #48

, . . N.Lane, Bioenergetic Constraints on the Evolution of Complex Life, in P.J.Keeling and E.V.Koonin, eds., The Origin and Evolution of Eukaryotes. Cold Spring Harbor Perspectives in Biology (2013).

· #49

J.Banavar and A.Maritan. Life on Earth: The Role of Proteins, J.Barrow and S.Conway Morris, Fitness of the Cosmos for Life (Cambridge: Cambridge University Press, 2007), 22555.

· #50

E.Schneider and D.Sagan. Into the Cool: Energy Flow, Thermodynamics, and Life (Chicago, IL: University of Chicago Press, 2005).

· #51

Dr.D.R.Williams. Viking Mission to Mars, NASA. 18 , 2006.

· #52

www.space.com-18803-viking.

· #53

ntrs.nasa.gov-archive-nasa-casi.ntrs.nasa.gov-19740026174.pdf. : R.Navarro-Gonzales et al., Reanalysis of the Viking Results Suggests Perchlorate and Organics at Midlatitudes on Mars, Journal of Geophysical Research 115 (2010).

· #54

P.Rincon, Oldest Evidence of Photosynthesis, BBC. com, December 17, 2003 and S.J.Mojzsis et al., Evidence for Life on Earth Before 3,800 Million Years Ago, Nature 384 (1996): 5559; M.Schidlowski, A 3,800-Million-Year-Old Record of Life from Carbon in Sedimentary Rocks, Nature 333 (1988): 31318; M.Schidlowski et al., Carbon Isotope Geochemistry of the 3. 7 x 100-Yr-Old Isua Sediments, West Greenland: Implications for the Archaean Carbon and Oxygen Cycles, Geochimica et Cosmochimica Acta 43 (1979): 18999.

· #55

K.Maher and D.Stevenson. Impact Frustration of the Origin of Life, Nature 331 (1988): 61214.

· #56

R.Dalton. Fresh Study Questions Oldest Traces of Life in Akilia Rock, Nature 429 (2004): 688. : Papineau et al., Ancient Graphite in the Eoarchean Quartz-Pyroxene Rocks from Akilia in Southern West Greenland I: Petrographic and Spectroscopic Characterization, Geochimica et Cosmochimica Acta 74, no. 20 (2010): 586283.

· #57

J.W.Schopf, Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of Life, Science 260, no. 5108 (1993): 64046.

· #58

M.D.Brasier et al., Questioning the Evidence for Earths Oldest Fossils, Nature 416 (2002): 7681.

· #59

D.Wacey et al., Microfossils of Sulphur-Metabolizing Cells in 3 4-Billion-Year-Old Rocks of Western Australia, Nature Geoscience 4 (2011): 698702.

· #60

M.D.Brasier, Secret Chambers: The Inside Story of Cells and Complex Life (New York: Oxford University Press, 2012), 298.

· #61

Ancient Earth May Have Smelled Like Rotten Eggs, Talk of the Nation, National Public Radio, 3 , 2013.

· #62

www.nasa.gov-mission_pages-msl-#.U4Izyxa9yxo.

· #63

www.abc.net.au-science-articles-201108223299027.htm.

· #64

J.Haldane, What Is Life? (New York: Boni and Gaer, 1947), 53.

· #65

L.Orgel, The Origins of Life: Molecules and Natural Selection (Hoboken, NJ: John Wiley and Sons, 1973).

· #66

J.A.Baross and J.W.Deming, Growth at High Temperatures: Isolation and Taxonomy, Physiology, and Ecology, in The Microbiology of Deep-sea Hydrothermal Vents, D.M.Karl, ed., (Boca Raton: CRC Press, 1995), 169217, E.Stueken et al., Did Life Originate in a Global Chemical Reactor? Geobiology 11, no. 2 (2013); K.O.Stetter, Extremophiles and Their Adaptation to Hot Environments, FEES Letters 452, nos. 12 (1999): 2225. K.O.Stetter, Hyperthermophilic Microorganisms, in Astrobiology: The Quest for the Conditions of Life, G.Homeckand, C.Baumstark-Khan, eds. (Berlin: Springer, 2002), 16984.

· #67

Y.Shen and R.Buick, The Antiquity of Microbial Sulfate Reduction. Earth Science Reviews 64 (2004): 243272.

· #68

S.A.Benner, Understanding Nucleic Acids Using Synthetic Chemistry, Accounts of Chemical Research 37, no. 10 (2004): 78497; S.A.Benner, Phosphates, DNA, and the Search for Nonterrean life: A Second Generation Model for Genetic Molecules, Bioorganic Chemistry 30, no. 1 (2002): 6280.

· #69

G.Wachtershauser, Origin of Life: Life as We Dont Know It, Science, 289, no. 5483 (2000): 130708; G.Wachtershauser, Evolution of the First Metabolic Cycles, Proceedings of the National Academy of Sciences 87, no. 1 (1990): 200204; El.Wachtershauser, On the Chemistry and Evolution of the Pioneer Organism, Chemistry 6-Biodiversity 4, no, 4 (2007): 584602.

· #70

N.Lane, Life Ascending: The Ten Great Inventions of Evolution (New York: W.W.Norton & Company, 2009).

· #71

W.Martin and M.J.Russell, On the Origin of Biochemistry at an Alkaline Hydrothermal Vent, Philosophical Transactions of the Royal Society B: Biological Sciences 362, no. 1486 (2007); 1887925.

· #72

C.R.Woese, Bacterial Evolution, Microbiological Reviews 51, no. 2 (1987); 22171; C.R.Woese, Interpreting the Universal Phylogenetic Tree, Proceedings of the National Academy of Sciences 97 (2000); 839296.

· #73

S.A.Benner and D.Hutter, Phosphates, DNA, and the Search for Nonterrean Life: A Second Generation Model for Genetic Molecules, Bioorganic Chemistry 30 (2002): 6280; S.Benner et al., Is There a Common Chemical Model for Life in the Universe? Current Opinion in Chemical Biology 8, no. 6 (2004): 67289.

· #74

A.Lazcano, What Is Life? A Brief Historical Overview, Chemistry and. Biodiversity 5, no. 4 (2007); 115.

· #75

B.P.Weiss et al., A Low Temperature Transfer of ALH84001 from Mars to Earth, Science 290, no. 5492, (2000): 79195. J.L.Kirschvink and B.P.Weiss, Mars, Panspermia, and the Origin of Life: Where Did It All Begin? Palaeontologia Electronica 4, no. 2 (2001): 815. J.L.Kirschvink et al., Boron, Ribose, and a Martian Origin for Terrestrial Life, Geochimica et Cosmochimica Acta 70, no. 18 (2006): A320.

· #76

C.McKay, An Origin of Life on Mars, Cold Spring Harbor Perspectives in Biology 2, no. 4 (2010). J.Kirschvink et al., Mars, Panspermia, and die Origin of Life: Where Did It All Begin? Palaeolontogia Electronica 4, no. 2 (2002): 815.

· #77

D.Deamer, First Life: Discovering the Connections Between Stars, Cells, and How Life Began (Oakland: University of California Press, 2012), 286. : N.Lane and W.F.Martin, The Origin of Membrane Bioenergetics, Cell 151, no. 7 (2012): 140616.

· #78

www.nobelprize.org-mediaplayer-index.php?id=1218

· #79

J.Raymond and D.Segre, The Effect of Oxygen on Biochemical Networks and the Evolution of Complex Life, Science 311 (2006): 176467.

· #80

J.F.Kasting and S.Ono, Palaeoclimates: The first Two Billion Years, Philosophical Transactions of the Royal Society Biological Sciences 361 (2006): 91729.

· #81

P.Cloud, Paleoecological Significance of Banded-Iron Formation, Economic Geology 68 (1973): 113543.

· #82

R.E.Kopp and J.L.Kirschvink, The Identification and Biogeochemical Interpretation of Fossil Magnetotactic Bacteria, Earth-Science Reviews 86 (2008): 4261.

· #83

J.L.Kirschvink et al., Paleoproterozoic Snowball Earth: Extreme Climatic and Geochemical Global Change and Its Biological Consequences, Proceedings of the National Academy of Sciences 97 (2000): 14001405.

· #84

J.L.Kirschvink and R.E.Kopp, Paleoproterozic Ice Houses and the Evolution of Oxygen-Mediating Enzymes: The Case for a Late Origin of Photosystem-II, Philosophical Transactions of the Royal Society of London, SeriesB 363, no. 1504 (2008): 275565.

· #85

H.D.Holland, Early Proterozoic Atmospheric Change, in S.Bengtson, ed., Early Life on Earth (New York Columbia University Press, 1994), 23744.

· #86

D.T.Johnston et al., Anoxygenie Photosynthesis Modulated Proterozoic Oxygen and Sustained Earths Middle Age, Proceedings of the National Academy of Sciences 106, no. 40 (2009), 16925-29.

· #87

A.El Albani et al., Large Colonial Organisms with Coordinated Growth in Oxygenated Environments 2.1 Gyr Ago, Nature 466, no. 7302 (2002): 100104.2; www.sciencedaily.com-releases-201006-100630171711.htm.

· #88

D.E.Canfield et al., Oxygen Dynamics in the Aftermath of the Great Oxidation of Earths Atmosphere, Proceedings of the National Academy of Sciences, no. 422 (2013).

· #89

A.H.Knoll, Life on a Young Planet: The First Three Billion Years of Evolution on Earth (Princeton: Princeton University Press, 2003).

· #90

P.F.Hoffman et al., A Neoproterozoic Snowball Earth, Science 281, no, 5381 (1998): 134246; F.A.Macdonald et al., Calibrating the Cryogenian, Science, 327, no. 5970 (2010): 124143.

· #91

B.Shen et al., The Avalon Explosion: Evolution of Ediacara Morphospace, Science 319 no. 5859 (2008): 8184; G.M.Narbonne, The Ediacara Biota: A Terminal Neoproterozoic Experiment in the Evolution of Life, Geological Society of America 8, no. 2 (1998): 16; S.Xiao and M.Laflamme, On the Eve of Animal Radiation: Phylogeny, Ecology and Evolution of the Ediacara Biota, Trends in Ecology and Evolution 24, no. 1 (2009): 3140.

· #92

. . .

· #93

R.C.Sprigg, Early Cambrian jellyfishes of Ediacara, South Australia and Mount John, Kimberly District, Western Australia, Transactions of the Royal Society of South Australia 73 (1947): 7299.

· #94

R.Sprigg, On the 1946 Discovery of the Precambrian Ediacaran Fossil Fauna in South Australia, Earth Sciences History 7 (1988): 4651.

· #95

S.Turner and P.Vickers-Rich, Sprigg, Martin F.Glaessner, Maiy Wade and the Ediacaran Fauna, IGCP, Prato Workshop, Monash University Centre, 3031 , 2004.

· #96

M.F.Glaessner, Precambrian Animals, Scientific American 204, no. 3 (1961): 7278.

· #97

- ; , www.samuseumn.sa.gov.au/explore/museum-galleries/ediacaran-fossils.

· #98

B.Waggoner, Interpreting the Earliest Metazoan Fossils: What Can We Learn? Integrative and Comparative Biology 38, no. 6 (1998); 97582; D.E.Canfield et al., Late-Neoproterozoic Deep-Ocean Oxygenation and the Rise of Animal Life, Science 315, no. 5808 (2007): 9295; B.Shen et al., The Avalon Explosion: Evolution of Ediacara Morphospace, Science 319, no. 5859 (2008): 8184.

· #99

B.MacGabhann, There is No Such Thing as the Ediacaran Biota, Geoscience Frontiers 5, no. 1 (2014): 5362.

· #100

N.J.Butterfield, Bangiomorpha pubescens n. gen., 11. sp.: Implications for the Evolution of Sex, Multieelhilarity, and the Mesoproterozoic-Neoproterozoic Radiation of Eukaryotes, Paleobiology 26, no. 3 (2000): 386404.

· #101

M.Brasier et al., Ediacaran Sponge Spicule Clusters from Mongolia and the Origins of the Cambrian Fauna, Geology 25 (1997): 30306.

· #102

J.Y.Chen et al., Small Bilaterian Fossils from 40 to 55 Million Years before the Cambrian, Science 305, no. 5681 (2004): 21822; A.F.Knoll et al., Eukaryotic Organisms in Proterozoic Oceans, Philosophical Transactions of the Royal Society 361, no. 1470 (2006); 102338; B.Waggoner, Interpreting the Earliest Metazoan Fossils: What Can We Leam? Integrative and Comparative Biology 38, no. 6 (1998): 97582.

· #103

A.Seilacher and F.Pfluger, From Biomats to Benthic Agriculture: A Biohistoric Revolution, in W.E.Krummbein et al., eds., Biostabilization of Sediments. (Bibliotheks und Informationssystem der Carl von Ossietzky Universitat Odenburg, 1994), 97105; A.Ivantsov, Feeding Traces of the Ediacaran Animals, Abstract, 33rd International Geological Congress August 614, 2008, Oslo, Norway; S.Dombos et al., Evidence for Seafloor Microbial Mats and Associated Metazoan Lifestyles in Lower Cambrian Phosphorites of Southwest China, Lethaia 37, no. 2 (2004): 12737.

· #104

A.C.Maloof et al., Combined Paleomagnetic, Isotopic, and Stratigraphic Evidence for True Polar Wander from the Neoproterozoic Akademikerbreen Group, Svalbard, Norway, Geological Society of America Bulletin, 118, nos. 910 (2006): 1099124; N.L.Swanson-Hysell et al., Constraints on Neoproterozoic Paleogeography and Paleozoic Orogenesis from Paleomagnetic Records of the Bitter Springs Formation, Amadeus Basin, Central Australia, American Journal of Science 312, no. 8 (2012): 81784.

· #105

. : 2 . / . . .; . . . .: - , 2009. , .

· #106

, : S.J.Gould, Wonderful Life: The Burgess Shale and the Nature of History (New York: W.W.Norton & Company, 1989). , , , . , . , . , , , .

· #107

K.J.McNamara, Dating the Origin of Animals, Science 274, no. 5295 (1996): 199397.

· #108

A.H.Knoll and S.B.Carroll, Early Animal Evolution: EmergingViews from Comparative Biology and Geology, Science 254, no. 5423 (1999): 2129371.

· #109

K.J.Peterson and N.J.Butterfield, Origin of the Eumetazoa: Testing Ecological Predictions of Molecular Clocks Against the Proterozoic Fossil Record, Proceedings of the National Academy of Sciences 102, no. 27 (2005): 954752.

· #110

M.A.Fedonkin et al., The Rise of Animals: Evolution and Diversification of the Kingdom Animalia (Baltimore: Johns Hopkins University Press, 2007), 21316.

· #111

, , . , , : , . . , , G. E Budd and J.Jensen, A Critical Reappraisal of the Fossil Record of the Bilaterian Phyla, Biological Reviews 75, no. 2 (2000): 25395; S.J.Gould, Wonderful Life.

· #112

. GEOCARBSULF. R.A.Berner, GEOCARBSULF: A Combined Model for Phanerozoic Atmospheric Oxygen and Carbon Dioxide, Geochimica et Cosmochimica Acta 70 (2006): 565364.

· #113

N.J.Butterfield, Exceptional Fossil Preservation and the Cambrian Explosion, Integrative and Comparative Biology 43, no. 1 (2003): 16677; S.C.Morris, The Burgess Shale (Middle Cambrian) Fauna, Annual Review of Ecology and Systematics 10, no. 1 (1979): 32749.

· #114

D.Briggs et al., The Fossils of the Burgess Shale (Washington, D.C.: Smithsonian Institution Press, 1994).

· #115

H.B.Whittington, Geological Survey of Canada, The Burgess Shale (New Haven: Yale University Press, 1985), 306308.

· #116

J.W.Valentine, On the Origin of Phyla (Chicago: University of Chicago Press, 2004). J.W.Valentine and D.Envin, The Cambrian Explosion: The Construction of Animal Biodiversity (Roberts and Co. Publishing, 2013). 413; J.W.Valentine, Why No New Phyla after the Cambrian? Genome and Ecospace Hypotheses Revisited, abstract, Palaios 10, no. 2 (1995): 19091. S.Bengtson, Origins and Early Evolution of Predation, M.Kowalewski and P.H.Kelley, The Fossil Record of Predation. The Paleontological Society Papers 8 (Paleontological Society, 2002): 289317.

· #117

P.Ward, Out of Thin Air (Joseph Henry Press, 2006).

· #118

. . . .

· #119

H.X.Guang et al., The Cambrian Fossils of Chengjiang, China: The Flowering of Early Animal Life. (Oxford: Blackwell Publishing, 2004).

· #120

, XIX . , . : www.stephenjaygould.org-library-naturalhistory_cambrian.html.

· #121

M.Brasier et al., Decision on the Precambrian-Cambrian Boundary Stratotype, Episodes 17, no. 12 (1994): 95100.

· #122

W.Compston et al., Zircon U-Pb Ages for the Early Cambrian Time Scale, Journal of the Geological Society of London 149 (1992): 17184.

· #123

A.C.Maloof et al., Constraints on Early Cambrian Carbon Cycling from the Duration of the Nemakit-Daldynian-Tommotian Boundary Delta C-13 Shift, Morocco, Geology 38, no. 7 (2010): 62326.

· #124

M.Magaritz et al., Carbon-Isotope Events Across the Precambrian-Cambrian Boundary on the Siberian Platform, Nature 320 (1986): 25859.

· #125

... , : , , (. . .). . .

· #126

Steptoean Positive Carbon Isotope Excursion (SPICE) . . .

· #127

: G.Stanley, The History and Sedimentology of Ancient Reef Systems (Springer Publishing, 2001). W.Kiessling, E.Flugel, and J.Golonka, eds., Phanerozoic Reef Patterns 72 (SEPM Special Publications, 2002), 391463.

· #128

. XX , , . . -- ( ). , , , . . F.Debrenne and J.Vacelet, Archaeocyatha: Is the Sponge Model Consistent with Their Structural Organization? Palaeontographica Americana 54 (1984): 35869.

· #129

T.Servais et al., The Ordovician Biodiversification: Revolution in the Oceanic Trophic Chain, Lethaia 41,110.2 (2008): 99.

· #130

P.Ward, Out of Thin Air: Dinosaurs, Birds, and Earths Ancient Atmosphere (Washington, D. C.: Joseph Henry Press, 2006).

· #131

P.Ward, Out of Thin Air. , : C.R.Marshall, Explaining the Cambrian Explosion of Animals, Annual Review of Earth and Planetary Sciences 34 (2006): 35584.

· #132

J.Valentine, How Many Marine Invertebrate Fossils? Journal of Paleontology 44 (1970): 41015: N.Newell, Adequacy of die Fossil Record, Journal of Paleontology 33 (1959): 48899.

· #133

D.M.Raup, Taxonomic Diversity During the Phanerozoic, Science 177 (1972): 106571; D.Raup, Species Diversity in the Phanerozoic: An Interpretation, Paleobiology 2 (1976): 28997.

· #134

J.J.Sepkoski, Jr., Ten Years in the Library: New Data Confirm Paleontological Patterns, Paleobiology 19 (1993): 24657; J.J.Sepkoski, Jr., A Compendium of Fossil Marine Animal Genera, Bulletins of American Paleontology 363: 1560.

· #135

J.Alroy et al., Effects of Sampling Standardization on Estimates of Phanerozoic Marine Diversification, Proceedings of the National Academy of Sciences 98 (2001): 626166.

· #136

J.Sepkoski, Alpha, Beta, or Gamma; Where Does All the Diversity Go? Paleobiology 14 (1988): 22134.

· #137

J.Alroy et al., Phanerozoic Diversity Trends, Science 321 (2008); 97.

· #138

A.B.Smith, Large-Scale Heterogeneity of the Fossil Record: Implications for Phanerozoic Biodiversity Studies, Philosophical Transactions of the Royal Society of London 356, no. 1407 (2001): 35167; A.B.Smith, Phanerozoic Marine Diversity: Problems and Prospects, Journal of the Geological Society, London 164 (2007): 73145: A.B.Smith and A.J.McGowan, Cyclicity in the Fossil Record Mirrors Rock Outcrop Area, Biology Letters 1, no. 4 (2005): 44345; A.B.Smith, The Shape of the Marine Paleodiversity Curve Using the Phanerozoic Sedimentary Rock Record of Western Europe, Paleontology 50 (2007): 76574; A.McGowan and A.Smith Are Global Phanerozoic Marine Diversity Curves Truly Global? A Study of the Relationship between Regional Rock Records and Global Phanerozoic Marine Diversity, Paleobiology, 34, no. 1 (2008): 80103.

· #139

M.J.Benton and B.C.Emerson, How Did Life Become So Diverse? The Dynamics of Diversification According to die Fossil Record and Molecular Phylogenetics, Paleontology 50 (2007): 2340.

· #140

S.E.Peters, Geological Constraints on the Macroevolutionary History of Marine Animals, Proceedings of the National Academy of Sciences 102 (2005): 12326-31.

· #141

, - . , - . , , , . , (-) , . , , (, - ?). A.L.Melott and B.C.Thomas, Late Ordovician Geographic Patterns of Extinction Compared with Simulations of Astrophysical Ionizing Radiation Damage, Paleobiology 35 (2009): 31120. . www.nasa.gov-vision-universe-starsgalaxies-gammaray_extinction.html.

· #142

R.K.Bambach et al., Origination, Extinction, and Mass Depletions of Marine Diversity, Paleobiology 30, no. 4 (2004): 52242.

· #143

S.A.Young et al., A Major Drop in Seawater 87Sr-86Sr during the Middle Ordovician (Daniwilian): Links to Volcanism and Climate? Geology 37, 10 (2009): 95154.

· #144

S.Finnegan et al., The Magnitude and Duration of Late Ordovician-Early Silurian Glaciation, Science 331, no, 6019 (2011): 903906.

· #145

S.Finnegan et al., Climate Change and the Selective Signature of the Late Ordovician Mass Extinction, Proceedings of the National Academy of Sciences 109, no. 18 (201a): 682934.

· #146

, : www.devoniantimes.org-opportunity-tetrapodsAnswer.html, : S.E.Pierce et al., Three-Dimensional Limb Joint Mobility in the Early Tetrapod Ichthyostega Nature 486 (2012): 52427, and P.E.Ahlberg et al., The Axial Skeleton of the Devonian Tetrapod Ichthyostega Nature 437, no. 1 (2005): 13740.

· #147

J.A.Clack, Gaining Ground: The Origin and Early Evolution of Tetrapods, 2nd ed. (Bloomington: Indiana University Press, 2012).

· #148

E.B.Daeschler et al., A Devonian Tetrapod-Like Fish and the Evolution of the Tetrapod Body Plan, Nature 440, no. 7085 (2006): 75763; J.P.Downs et al., The Cranial Endoskeleton of Tiktaalik roseae, Nature 455 (2008): 92529. : P.E.Ahlberg and J.A.Clack, A Firm Step from Water to Land, Nature 440 (2006): 74749.

· #149

N.Shubin, Your Inner Fish: A Journey into the 3.5-Billion-Year History of the Human Body (Chicago: University of Chicago Press, 2008); B.Holmes, Meet Your Ancestor, the Fish That Crawled, New Scientist, September 9, 2006.

· #150

A.K.Behrensmeyer et al., eds., Terrestrial Ecosystems Through Time: Evolutionary Paleoecology of Terrestrial Plants and Animals (Chicago and London: University of Chicago Press, 1992); P.Kenrick and P.R.Crane, The Origin and Early Diversification of Land Plants. A Cladistic Study (Washington: Smithsonian Institution Press, 1997).

· #151

S.B.Hedges, Molecular Evidence for Early Colonization of Land by Fungi and Plants, Science 293 (2001): 112933.

· #152

C.V.Rubenstein et al., Early Middle Ordovician Evidence for Land Plants in Argentina (Eastern Gondwana), New Phytologist 188, no. 2 (2010): 36569. : www.dailymail.co.uk-sciencetech-article-1319904-Fossils-worlds-oldest-plants-unearthed-Argentina.html.

· #153

J.T.Clarke et al., Establishing a Time-Scale for Plant Evolution, New Phytologist 192, no. 1 (2011): 26630; M.E.Kotyk et al., Morphologically Complex Plant Macrofossils from the Late Silurian of Arctic Canada, American Journal of Botany 89 (2002): 100413.

· #154

: P.Ward et al., Confirmation of Romers Gap as a Low Oxygen Interval Constraining the Timing of Initial Arthropod and Vertebrate Terrestrialization, Proceedings of the National Academy of Sciences 10, no. 45 (2006): 16818-22.

· #155

R.Dudley, Atmospheric Oxygen, Giant Paleozoic Insects and the Evolution of Aerial Locomotor Performance, The Journal of Experimental Biology 201 (1988): 104350; R.Dudley, The Biomechanics of Insect Flight: Form, Function, Evolution (Princeton: Princeton University Press, 2000); R.Dudley and P.Chai, Animal Flight Mechanics in Physically Variable Gas Mixtures, The Journal of Experimental Biology 199 (1996): 188185. C.Gans et al., Late Paleozoic Atmospheres and Biotic Evolution, Historical Biology 13 (1991): 199219; J.Graham et al., Implications of the Late Paleozoic Oxygen Pulse for Physiology and Evolution, Nature 375 (1995): 11720; J.F.Harrison et al., Atmospheric-Oxygen Level and the Evolution of Insect Body Size, Proceedings of the Royal Society B-Biological Sciences 277 (2010): 193746.

· #156

D.Flouday et al., The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes, Science 336, no. 6089 (2012): 1715-19.

· #157

.

· #158

J.A.Raven, Plant Responses to High O, Concentrations: Relevance to Previous HighO., Episodes, Global and Planetary Change 97 (1991): 1938; and J.A.Raven et al., The Influence of Natural and Experimental High O2 Concentrations on O2-EvoKing Phototrophs, Biological Reviews 69 (1994): 6194 2.

· #159

J.S.Clark et al., Sediment Records of Biomass Burning and Global Change (Berlin: Springer-Verlag, 1997); M.J.Cope et al., Fossil Charcoals as Evidence of Past Atmospheric Composition, Nature 283 (1980): 64749; C.M.Belcher et al., Baseline Intrinsic Flammability of Earths Ecosystems Estimated from Paleoatmospheric Oxygen over the Past 350 Million Years, Proceedings of the National Academy of Sciences 107, no. 52 (2010): 22448-53. , , . , , .

· #160

D.Beerling, The Emerald Planet: How Plants Changed Earth's History (New York: Oxford University Press, 2007).

· #161

Q.Cai et al., The Genome Sequence of the Ground Tit Pseudopodoces kumilis Provides Insights into Its Adaptation to High Altitude, Genome Biology 14, no. 3 (2013); www.geo.umass.edu-climate-quelccaya-diuca.html, P.Ward, Out of Thin Air: Dinosaurs, Birds, and Earth's Ancient Atmosphere (Washington, D.C.: Joseph Henry Press, 2006). .

· #162

P.Ward, Out of Thin Air.

· #163

M.Laurin and R.R.Reisz, A Reevaluation of Early Amniote Phytogeny, Zoological Journal of the Linnean Society 113, no. 2 (1995): 165223.

· #164

P.Ward, Out of Thin Air.

· #165

C.Sidor et al., Permian Tetrapods from the Sahara Show Climate-Controlled Endemism in Pangaea, Nature 434 (2012): 88689; S.Sahney and M.J.Benton, Recovery from the Most Profound Mass Extinction of All Time, Proceedings of the Royal Society, SeriesB 275 (2008): 75965.

· #166

. : S.-Z.Shen et al., Calibrating the End-Penman Mass Extinction, Science 334, no. 6061 (2011): 136772; Y.G.Jin et al., Pattern of Marine Mass Extinction Near the Permian-Triassic Boundary in South China, Science 289, no. 5478 (2000): 43236.

· #167

C.R.Marshall, Confidence Limits in Stratigraphy, in D.E.G.Briggs and P.R.Crowther, eds., Paleobiology II (Oxford: Blackwell Scientific, 2001), 54245; : C.J.A.Bradshaw et al., Robust Estimates of Extinction Time in the Geological Record, Quaternary Science Reviews 33 (2011): 1419.

· #168

End-Permian Extinction Happened in 60,000 Years Much Faster than Earlier Estimates, Study Says, Phys. org, February 10, 2014. S.D.Burgess et al., High-Precision Timeline for Earths Most Severe Extinction, Proceedings of the National Academy of Sciences 111, no. 9 (2014): 331621.

· #169

L.Becker et al., Impact Event at the Permian-Triassic Boundary: Evidence from Extraterrestrial Noble Gases in Fullerenes, Science 291 (2001): 153033.

· #170

L.Becker et al., Bedout: A Possible End-Permian Impact Crater Offshore of Northwestern Australia, Science 304 (2004): 146976.

· #171

K.Grice et al., Photic Zone Euxinia During the Permian-Triassic Superanoxic Event, Science 307 (2005): 70609.

· #172

C.Cao et al., Biogeochemical Evidence for Euxinic Oceans and Ecological Disturbance Presaging the End-Permian Mass Extinction Event, Earth and Planetary Science Letters 281 (2009): 188201.

· #173

L.R.Kump and M.A.Arthur, Inteqireting Carbon-Isotope Excursions: Carbonates and Organic Matter, Chemical Geology 161 (1999): 18198.

· #174

K.M.Meyer and L.R.Kump, Oceanic Euxinia in Earth History: Causes and Consequences, Annual Review of Earth and Planetary Sciences 36 (2008): 25188.

· #175

T.J.Algeo and E.D.Ingall, Sedimentary Corg: P Ratios, Paleoceanography, Ventilation, and Phanerozoic Atmospheric pO2 Palaeogeography, Palaeoclimatology, Palaeoecology 256 (2007): 13055; C.Wingudi and A.M.E.Winguth, Simulating Permian-Triassic Oceanic Anoxia Distribution: Implications for Species Extinction and Recovery, Geology 40 (2012): 12730; S.Xie et al., Changes in the Global Carbon Cycle Occurred as Two Episodes during the Permian-Triassic Crisis, Geology 35 (2007): 108386; S.Xie et al., Two Episodes of Microbial Change Coupled with Permo-Triassic Faunal Mass Extinction, Nature 434 (2005): 49497; G.Luo et al., Stepwise and Large-Magnitude Negative Shift in d13Ccarb Preceded the Main Marine Mass Extinction oldie Permian-Triassic Crisis Interval, Palaeogeography, Palaeoclimatology, Palaeoecology 299 (2011): 7082; G.A.Brenneeka et al., Rapid Expansion of Oceanic Anoxia Immediately before the End-Permian Mass Extinction, Proceedings of the National Academy of Sciences 108 (2011): 17631-34.

· #176

P.Ward et al., Abrupt and Gradual Extinction Among Late Permian Land Vertebrates in the Karoo Basin, South Africa, Science 307 (2005): 70914; C.Sidor et al., Permian Tetrapods from the Sahara Show Climate-Controlled Endemism in Pangaea; S.Sahney and M.J.Benton, Recovery from the Most Profound Mass Extinction of All Time.

· #177

R.B.Huey and P.D.Ward, Hypoxia, Global Warming, and Terrestrial Late Permian Extinctions, Science, 308, no. 5720 (2005): 398401.

· #178

P.Ward et al., Abrupt and Gradual Extinction Among Late Permian Land Vertebrates in the Karoo Basin, South Africa.

· #179

, .

· #180

S.Schoepfer et al., Cessation of a Productive Coastal Upwelling System in the Panthalassic Ocean at the Permian-Triassic Boundary, Palaeogeography, Palaeoclimatology, Palaeoecology 31314 (2012): 18188.

· #181

, . . G.D.StanleyJr., ed., Paleobiology and Biology of Corals, Paleontological Society Papers, vol. 1 (Boulder, CO: The Paleontological Society, 1996). : , (Corals and Reefs: Crises, Collapse and Change), , 8 2011.

· #182

P.C.Sereno, The Origin and Evolution of Dinosaurs, Annual Review of Earth and Planetary Sciences 25 (1997): 43589; P.C.Sereno et al., Primitive Dinosaur Skeleton from Argentina and the Early Evolution of Dinosauria, Nature 361 (1993): 6466; P.C.Sereno and A.B.Arcucci, Dinosaurian Precursors from the Middle Triassie of Argentina: Lagerpeton chanarensis, Journal of Vertebrate Paleontology 13 (1994): 38599. : M.J.Benton, Dinosaur Success in the Triassie: A Noncompetitive Ecological Model, Quarterly Review of Biology 58 (1983): 2955; M.J.Benton, The Origin of the Dinosaurs, in C. A.-P Salense, ed., Ill Jomadas Internacionales sobre Paleontologta de Dinosaurios su Entorno (Burgos, Spain: Salas de los Infantes, 2006), 1119; A.P.Hunt et al., Late Triassie Dinosaurs from the Western United States, Geobios 31 (1998): 51131; R.B.Trims et al., A Late Triassie Dinosauromorph Assemblage from New Mexico and the Rise of Dinosaurs, Science 317 (2007): 35861; R.B.Irmis et al., Early Ornithischian Dinosaurs: The Triassie Record, Historical Biology 19 (2007): 322: S.J.Nesbitt et al., A Critical Re-evaluation of the Late Triassie Dinosaur Taxa of North America, Journal of Systematic Paleontology 5 (2007): 20943; 8. J.Nesbitt et al., Ecologically Distinct Dinosaurian Sister Group Shows Early Diversification of Omithodira, Nature 464 (2010): 9598.

· #183

D.R.Carrier, The Evolution of Locomotor Stamina in Tetrapods: Circumventing a Mechanical Constraint, Paleobiology 13 (1987): 32641.

· #184

E.Schachner, R.Cieri, J.Butler, G.Farmer, Unidirectional Pulmonary Airflow Patterns in the Savannah Monitor Lizard, Nature 506, no. 7488 (2013): 36770.

· #185

A.F.Bennett, Exercise Performance of Reptiles, in J.H.Jones et al., eds., Comparative Vertebrate Exercise Physiology: Phyletic Adaptations, Advances in Veterinary Science and Comparative Medicine, vol. 3 (New York; Academic Press, 1994), 11338.

· #186

N.Bardet, Stratigraphic Evidence for the Extinction of the Ichthyosaurs, Terra Nova 4 (1992): 64956. . : C.W.A.Andrews, A Descriptive Catalogue of the Marine Reptiles of the Oxford Clay. Based on the Leeds Collection in the British Museum (Natural History), London. Part II (London: 1910): 1205, : R.Motani, The Evolution of Marine Reptiles, Evolution: Education and Outreach 2, no. 2 (2009): 22435.

· #187

P.Ward et al., Sudden Productivity Collapse Associated with the Triassic-Jurassic Boundary Mass Extinction, Science 292 (2001): 11519; P.Ward et al., Isotopic Evidence Bearing on Late Triassie Extinction Events, Queen Charlotte Islands, British Columbia, and Implications for the Duration and Cause of the Triassic-Jurassic Mass Extinction, Earth and Planetary Science Letters 224, nos. 34: 589600. - . K.H.Williford et al., An Extended Stable Organic Carbon Isotope Record Across the Triassic-Jurassic Boundary in the Queen Charlotte Islands, British Columbia, Canada, Palaeogeography, Palaeoclimatology, Palaeoecology 244, nos. 14 (2006): 29096.

· #188

P.E.Olsen et al., Ascent of Dinosaurs Linked to an Iridium Anomaly at the Triassic-Jurassic Boundary, Science 296, no. 5571 (2002): 130507.

· #189

J.P.Hodych and G.R.Dunning, Did the Manicougan Impact Trigger End-of-Triassic Mass Extinction? Geology 20, no. 1 (1992): 5154; L.H.Tanner et al., Assessing the Record and Causes of Late Triassic Extinctions, Earth-Science Reviews 65, nos. 12 (2004): 10339; J.-H.Whiteside et al., Compound-Specific Carbon Isotopes from Earths Largest Flood Basalt Eruptions Directly Linked to the End-Triassic Mass Extinction, Proceedings of the National Academy of Sciences 107, no. 15 (2010): 672125; M.H.L.Deenen et al., A New Chronology for the End-Triassic Mass Extinction, Earth and Planetary Science Letters 291, no. 14 (2010): 11325.

· #190

.: , 2006.

· #191

, , , : D.B.Weishampel et al., The Dinosauria (Oakland: University of California Press, 2004). , - , 2014 .

· #192

, . , , .

· #193

D.Fastovsky and D.Weishampel, The Evolution and Extinction of the Dinosaurs (Cambridge: Cambridge University Press: 2005).

· #194

P. OConnor and L.Claessens, Basic Avian Pulmonary Design and Flow ThroughVentilation in Non-Avian Theropod Dinosaurs, Nature 436, no. 7048 (2005): 25356. : J.A.Ruben et al., Pulmonary Function and Metabolic Physiology of Theropod Dinosaurs, Science 283, no. 5401 (1999): 51416.

· #195

W.J.Hillenius and J.A.Ruben, The Evolution of Endothenny in Terrestrial Vertebrates: Who? When? Why? Physiological and Biochemical Zoology 77, no. 6 (2004): 10191042. : G.M.Erickson et al., Tyrannosaur Life Tables: An Example of Nonavian Dinosaur Population Biology, Science 313, no. 5784 (2006): 21317; A. de Ricqles et al., On the Origin of High Growth Rates in Archosaurs and their Ancient Relatives: Complementary Histological Studies on Triassic Archosaurifonns and the Problem of a Phylogenetic Signal in Bone Histology, Annales de Paleontology 94. no. 2 (2008): 57.

· #196

K.Carpenter, Eggs, Nests, and Baby Dinosaurs: A Look at Dinosaur Reproduction (Bloomington: Indiana University Press, 2000.

· #197

R.Takashima, Greenhouse World and the Mesozoic Ocean, Oceanography 19, no 4 (2006): 8292.

· #198

A.S.Gale, The Cretaceous World, in S.J.Culver and P.F.Raqson, eds., Biotic Response to Global Change: The Last 145 Million Years (Cambridge: Cambridge University Press, 2006), 419.

· #199

T.J.Bralower et al., Dysoxic-Anoxic Episodes in the Aptian-Albian (Early Cretaceous), in The Mesozoic Pacific: Geology, Tectonics and Volcanism, M.S.Pringle et al., eds. (Washington, D.C.: American Geophysical Union, 1993), 537.

· #200

R.T.Huber et al., Deep-Sea Paleotemperature Record of Extreme Warmth During the Cretaceous, Geology 30 (2002): 12326; A.H.Jahren, The Biogeochemical Consequences of the Mid-Cretaceous Superplume, Journal of Geodynamics 34 (2002): 17791; I.Jarvis et al., Microfossil Assemblages and the Cenomanian-Turonian (Late Cretaceous) Oceanic Anoxic Event, Cretaceous Research 9 (1988): 3103. , , . . Ammonoid Paleobiology, Neil Landman et al., eds. (Springer, 1996). ( Baculites) , 1976.

· #201

( !) : N.H.Landman et al., Methane Seeps as Ammonite Habitats in the U.S.Western Interior Seaway Revealed by Isotopic Analyses of Well-preserved Shell Material, Geology 40, no. 6 (2012): 507. : N.H.Landman et al., The Role of Ammonites in the Mesozoic Marine Food Web Revealed by Jaw Preservation, Science 331, no. 6013 (2011): 7072. Baculite, .

· #202

. .

· #203

G.J.Vermeij, The Mesozoic Marine Revolution: Evidence from Snails, Predators and Grazers, Palaeobiology 3 (1977): 24558.

· #204

S.M.Stanley, Predation Defeats Competition on the Seafloor, Palaeobiology 34, no. X (2008): 121.

· #205

T.Baumiller et al., Post-Paleozoic Crinoid Radiation in Response to Benthic Predation Preceded the Mesozoic Marine Revolution, Proceedings of the National Academy of Sciences of the United States of America 107, no. 13 (2010): 589396.

· #206

T.Oji, Is Predation Intensity Reduced with Increasing Depth? Evidence from the West Adantic Stalked Crinoid Endoxocrinus parrae (Gervais) and Implications for the Mesozoic Marine Revolution, Palaeobiology 22 (1996): 33951.

· #207

., .. / . . .. : -, 2002.

· #208

L.W.Alvarez et al., Extraterrestrial Cause for the Cretaceous-Tertiary Extinction, Science 208, no. 4448 (1980): 1095. : A.R.Hildebrand et al., Chicxulub Crater: A Possible Cretaceous-Tertiary Boundary Impact Crater on the Yucatan Peninsula, Mexico, Geology 19 (1991): 86771.

· #209

P.Schulte et al. The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary, Science 327, no. 5970 (2005): 121418.

· #210

J.Vellekoop et al., Rapid Short-Term Cooling Following the Chicxulub Impact at the Cretaceous-Paleogene Boundary, Proceedings of the National Academy of Sciences 111, no 21 (2014): 75377541. , : P.Ward, Under a Green Sky: Global Warming, the Mass Extinctions of the Past, and What They Can Tell Us About Our Future (Washington, D.C.: Smithsonian. 2007).

· #211

: D.Jablonski, Extinctions in the Fossil Record (and Discussion), Philosophical Transactions of the Royal Society of London, SeriesB 344. 1307 (1994): 1117.

· #212

D.M.Raup and D.Jablonski, Geography of End-Cretaceous Marine Bivalve Extinctions, Science 260, 5110 (1993): 97173; P.M.Sheehan and D.E.Fastovsky, Major Extinctions of Land-Dwelling Vertebrates at the Cretaceous-Tertiary Boundary, Eastern Montana, Geology 20 (1992): 55660; R.K.Bambach et al., Origination, Extinction, and Mass Depletions of Marine Diversity, Palaeobiology 30, no. 4 (2004): 52242. D.J.Nichols and K.R.Johnson, Plants and the K-T Boundary (Cambridge: Cambridge University Press, 2008); P.Ward et al., Ammonite and Inoceramid Bivalve Extinction Patterns in Cretaceous-Tertiary Boundary Sections of the Biscay Region (Southwestern France, Northern Spain), Geology 19, no. 12 (1991): 118184; , : N.MacLeod et al., The Cretaceous-Tertiary Biotic Transition, Journal of the Geological Society 154, no. 2 (1997): 26592. : P.Shulte et al., The Chiexulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundaiy, Science 327, no. 5970 (2010): 121418.

· #213

V.Courtillot et al., Deccan Flood Basalts at the Cretaceous-Tertiary Boundary? Earth and Planetary Science Letters 80, nos. 34 (1986): 36174; C.Moskowitz, New Dino-Destroying Theory Fuels Hot Debate, space, com, October 18, 2009.

· #214

T.S.Tobin et al., Extinction Patterns, ?18O Trends, and Magnetostratigraphy from a Southern High-Latitude Cretaceous-Paleogene Section: Links with Deccan Volcanism, Palaeogeography, Palaeoclimatology, Palaeoecology 35052 (2012): 18088.

· #215

Vertebrate Paleontology and Evolution (New York: W.H.Freeman and Company, 1988). , : O.R.P.Bininda-Emonds et id. The Delayed Rise of Present-Day Mammals, Nature 446, no. 7135 (2007): 50711: Z.-X.Luo et al., A New Mammaliaform from the Early Jurassic and Evolution of Mammalian Characteristics, Science 292, 5521 (2001): 153540.

· #216

J.R.Wible et al., Cretaceous Eutherians and Laurasian Origin for Placental Mammals Near the K-T Boundary, Nature 447, no. 7147 (2007): 10036; M.S.Springer et al., Placental Mammal Diversification and the Cretaceous Tertiary Boundary, Proceedings of the National Academy of Sciences 100, no. 3 (2002): 105661.

· #217

K.Plelgen, The Mammal Family Tree, Science 334, no. 6055 (2011): 45859.

· #218

Q.Ji et al., The Earliest Known Eutherian Mammal, Nature 416, no. 6883 (2002): 81622.

· #219

Z.-X.Luo et al., A Jurassic Eutherian Mammal and Divergence of Marsupials and Placentals. Nature 476, no. 7361 (2011): 44245.

· #220

K.Jiang, Fossil Indicates Hairy, Squirrel-sized Creature Was Not Quite a Mammal, Chicago News, August 7, 2013; C.F.Zhou, A Jurassic Mammaliaform and the Earliest Mammalian Evolutionary Adaptations, Nature 500 (2013: 16367).

· #221

Z.-X.Luo, Transformation and Diversification in Early Mammal Evolution, Nature 450, no. 7172 (2007): 101119.

· #222

J.P.Kennett and L.D.Stott, Abrupt Deep-Sea Warming, Paleoceanographic Changes and Benthic Extinctions at the End of the Paleocene, Nature 353 (1991): 22529.

· #223

U.Rohl et al., New Chronology for the Late Paleocene Thermal Maximum and Its Environmental Implications, Geology 28, no. 10 (2000): 92730; T.Westerhold et al., New Chronology for the Late Paleocene Thermal Maximum and Its Environmental Implications, Palaeogeography, Palaeoclimatology, Palaeoecology 257 (2008): 37774.

· #224

P.L.Koch et al., Correlation Between Isotope Records in Marine and Continental Carbon Reservoirs Near the Paleocene-Eocene Boundary, Nature 358 (1992); 31922.

· #225

M.D.Hatch, C(4) Photosynthesis: Discovery and Resolution, Photosynthesis Research 73, nos. 13 (2002): 25156.

· #226

E.J.Edwards and S.A.Smith, Phylogenetic Analyses Reveal the Shady History of G Grasses, Proceedings of the National Academy of Sciences 107, nos. 6 (2010): 253237; C.P.Osborne and R.P.Freckleton, Ecological Selection Pressures for C4 Photosynthesis in the Grasses, Proceedings of the Royal Society B-Biological Sciences 276, no. 1663 (2009): 175360.

· #227

: ( ) ( , ). . . , , , , . , . , , , . , , , . , , !

· #228

K.Padian and L.M.Chiappe, Bird Origins, in P.J.Currie and K.Padian, eds., Encyclopedia of Dinosaurs (San Diego: Academic Press, 1997), 4196; J.Gauthier, Saurischian Monophyly and the Origin of Birds, in K.Padian, Memoirs of the California Academy of Sciences 8 (1986): 155; L.M.Chiappe, Downsized Dinosaurs: The Evolutionary Transition to Modern Birds, Evolution: Education and Outreach 2, no. 2 (2009): 24856.

· #229

J.H.Ostrom, The Ancestry of Birds, Nature 242, no. 5393 (1973): 136; J.Gauthier, Saurischian Monophyly and the Origin of Birds, in K.Padian, Memoirs of the California Academy of Sciences 8 (1986): 155; J.Cracraft, The Major Clades of Birds, in M.J.Benton, ed., The Phylogeny and Classification of the Tetrapods, Volume I: Amphibians, Reptiles, Birds (Oxford: Clarendon Press, 1988), 33961.

· #230

A.Feduccia, On Why the Dinosaur Lacked Feathers, in M.K.Hecht et al., eds. The Beginnings of Birds: Proceedings of the International Archaeopteryx Conference Eichstatt 1984 (Eichstatt: Freunde des Jura-Museums Eichstatt, 1985), 7579; A.Feduccia et al., Do Feathered Dinosaurs Exist? Testing the Hypothesis on Neontological and Paleontological Evidence, Journal of Morphology 266, no. 2 (2005): 12566.

· #231

J. OConnor, A Revised Look at Liaoningornis Longidigitris (Aves). Vertebrate PalAsiatica 50 (2012): 2537.

· #232

A.Feduccia, Explosive Evolution in Tertiary Birds and Mammals, Science 267, no. 5198 (1995): 63738; A.Feduccia, Big Bang for Tertiary Birds? Trends in Ecology and Evolution 18, no. 4 (2003): 17276.

· #233

M.Norell and M.Ellison, Unearthing the Dragon: The Great Feathered Dinosaur Discovery (New York: Pi Press, 2005); R.Prum, Are Current Critiques of the Theropod Origin of Birds Science? Rebuttal to Feduccia 2002, Auk 120, no. 2(2003): 55061; S.Hope, The Mesozoic Radiation of Neomithes, in L.M.Chiappe et al., Mesozoic Birds: Above the Heads of Dinosaurs (Oakland: University of California Press, 2002), 33988; P.Ericson et al., Diversification of Neoaves: Integration of Molecular Sequence Data and Fossils, Biology Letters 2, no. 4 (2006): 54347; K.Padian, The Origin and Evolution of Birds by Alan Feduccia (Yale University Press, 1996), American Scientist 85: 17881; M.A.Norell et al., Flight from Reason. Review of: The Origin and Evolution of Birds by Alan Feduccia (Yale University Press, 1996), Nature 384, no. 6606 (1997): 230; L.M.Witmer, The Debate on Avian Ancestry: Phylogeny, Function, and Fossils, in L.M.Chiappe and L.M.Witmer, eds., Mesozoic Birds: Above the Heads of Dinosaurs (Berkeley: University of California Press, 2002), 330.

· #234

C.Peiji et al., An Exceptionally Preserved Theropod Dinosaur from the Yixian Formation of China, Nature 391, no. 6663 (1998): 14752; G.S.Paul. Dinosaurs of the Air: The Evolution and Loss of Flight in Dinosaurs and Birds (Baltimore: Johns Hopkins University Press, 2002), 472: X.Xu et al., An Archaeopteryx like Theropod from China and the Origin of Avialae, Nature 475 (2011): 46570.

· #235

D.Hu et al., A Pre-Archaeopteryx Troodontid Theropod from China with Long Feathers on the Metatarsus, Nature 461, no. 7264 (2009): 64043; A.H.Turner et al., A Basal Dromaeosaurid and Size Evolution Preceding Avian Flight, Science 317, no. 5843 (2007): 137881; X.Xu et al., Basal Tyrannosauroids from China and Evidence for Protofeathers in Tyrannosauroids, Nature 431, 7009 (2004): 68084: C.Foth. On the Identification of Feather Structures in Stem-Line Representatives of Birds: Evidence from Fossils and Actuopalaeontology, Palaontologische Zeitschrift 86, no. 1 (2012): 91102; R.Prum and A.H.Brush, The Evolutionary Origin and Diversification of Feathers, Quarterly Review of Biology 77, no. 3 (2002): 26195.

· #236

M.H.Schweitzer et al., Soft-Tissue Vessels and Cellular Preservation in Tyrannosaurus rex, Science 307, no. 5717 (2005); C.Dal Sasso and M.Signore, Exceptional Soft-Tissue Preservation in a Theropod Dinosaur from Italy, Nature 392, no. 6674(1998): 38387; M.H.Schweitzer et al., Heme Compounds in Dinosaur Trabecular Bone, Proceedings of the National Academy of Sciences of the United States of America 94, no. 12 (1997): 629196.

· #237

Dr.Paul Willis, Dinosaurs and Birds: The Story, The Slab, http://www.abc.net.au/science/slab/dinobird/story.htm.

· #238

J. A, Clarke et al., Insight into the Evolution of Avian Flight from a New Clade of Early Cretaceous Omithurines from China and the Morphology of Yixianomis grabaui, Journal of Anatomy 208 (3 (2006): 287308.

· #239

N.Brocklehurst et al., The Completeness of the Fossil Record of Mesozoic Birds: Implications for Early Avian Evolution, PLOS One (2012); J.A.Clarke et al., Definitive Fossil Evidence for the Extant Avian Radiation in the Cretaceous, Nature 433 (2005): 3058.

· #240

L.Witmer, The Debate on Avian Ancestry: Phylogeny, Function and Fossils, in L.Chiappe et al., eds., Mesozoic Birds: Above the Heads of Dinosaurs (Berkeley, California: University of California Press, 2002), 330; L.M.Chiappe and C.J.Dyke, The Mesozoic Radiation of Birds, Annual Review of Ecology and Systematics 33 (2002): 91124; J.W.Brown et al., Strong Mitochondrial DNA Support for a Cretaceous Origin of Modem Avian Lineages, BMC Biology 6 (2008): 118; J.Cracraft, Avian Evolution, Gondwana Biogeography and the Cretaceous-Tertiary Mass Extinction Event, Proceedings of the Royal Society B-Biological Sciences 268 (2001): 45969; S.Hope, The Mesozoic Radiation of Neomithes, in L.M.Chiappe et al., eds., Mesozoic Birds: Above the Heads of Dinosaurs (Berkeley: University of California Press, 2002), 33988; Z.Zhang et al., A Primitive Confuciusornithid Bird from China and Its Implications for Early Avian Flight, Science in China Series D 51, no. 5 (2008): 62539.

· #241

N.R.Longrich et al., Mass Extinction of Birds at the Cretaceous-Paleogene (K-Pg) Boundary, Proceedings of the National Academy of Sciences 108 (2011): 15253-57; G.Mayr, Paleogene Fossil Birds (Berlin; Springer, 2009), 262; J.A.Clarke et al., Definitive Fossil Evidence for the Extant Avian Radiation in the Cretaceous, Nature 433 (2005): 3058; T.Fountaine, et al., The Quality of the Fossil Record of Mesozoic Birds, Proceedings of the Royal Academy of Sciences B-Biological Science 272 (2005): 28994.

· #242

P.Ericson et al. Diversification of Neoaves: Integration of Molecular Sequence Data and Fossils, Biology Letters 2, no.4 (2006): 54347; . . W.Brown et al., Nuclear DNA Does Not Reconcile Rocks and Clocks in Neoaves: A Comment on Ericson et al., Biology Letters 3, no. 3 (2007): 25720; A.Suh et al., Mesozoic Retroposons Reveal Parrots as the Closest Living Relatives of Passerine Birds, Nature Communications 2, no. 8 (2011).

· #243

K.J.Mitchell et al., Ancient DNA Reveals Elephant Birds and Kiwi Are Sister Taxa and Clarifies Ratite Bird Evolution, Science 344, no. 6186 (2014): 898900.

· #244

P.Ward, Rivers in Time (New York: Columbia University Press, 2000).

· #245

R.Leakey and R.Lewin, The Sixth Extinction (Norwell, MA: Anchor Press, 1996).

· #246

Lucy's Legacy: The Hidden Treasures of Ethiopia, Houston Museum of Natural Science, 2009.

· #247

D.Johanson and M.Edey, Lucy, the Beginnings of Humankind (Granada: St.Albans, 1981); W.L.Jungers, Lucys Length: Stature Reconstruction in Australopithecus afarensis (A. L.2881) with Implications for Other Small-Bodied Hominids, American Journal of Physical Anthropology 76, no. 2 (1988): 22731.

· #248

B.Yirka, Anthropologist Finds Large Differences in Gait of Early Human Ancestors, Phys.org, 12 , 2012; P.A.Kramer, Brief Communication: Could Kadanuumuu and Lucy Have Walked Together Comfortably? American Journal of Physical Anthropology 149 (2012): 61620; P.A.Kramer and D.Sylvester, The Energetic Cost of Walking: A Comparison of Predictive Methods, PLoS One (2011).

· #249

D.J.Green and Z.Alemseged, Australopithecus afarensis Scapular Ontogeny, Function, and the Role of Climbing in Human Evolution, Science 335, no. 6106 (2012): 51417.

· #250

J.P.Noonan, Neanderthal Genomics and the Evolution of Modem Humans, Genome Res. 20, no. 5 (2010): 54753.

· #251

K.Prufer et al., The Complete Genome Sequence of a Neanderthal from the Altliai Mountains, Nature 505, no. 7451 (2014): 4349.

· #252

P.Mellars, Why Did Modem Human Populations Disperse from Africa ca. 60,000 Years Ago? Proceedings of the National Academy of Sciences 103, no. 25 (2006): 938186.

· #253

P.Ward, The Call of Distant Mammoths: What Killed the Ice Age Mammals (Copernicus, Springer-Verlag, 1997).

<<<
>>>
----

: 2.070. /Cache: 0 / 0