Книга: Происхождение жизни. От туманности до клетки
Рибозимы осваивают обмен веществ
<<< Назад Глава 10 Витамины, аминокислоты и пептиды в РНК-мире |
Вперед >>> РНК и витамины |
Рибозимы осваивают обмен веществ
Как только на Земле появляются молекулы РНК, которые как-то копируются, между ними начинается конкуренция. Одни молекулы РНК копируются быстрее, чем другие, и могут накапливаться в большем количестве. Любая новая особенность рибозима, повышающая вероятность его копирования, будет подхвачена естественным отбором.
В прошлой главе мы обсудили возможности и ограничения рибозимов-полимераз и лигаз, которые прямо участвуют в копировании РНК. Но это не единственные способы, которыми рибозим может влиять на количество своих копий и их эволюционную судьбу. Как справедливо замечено в обзоре Martin et al., 2015, путь от простой органики к РНК состоит из многих шагов, и ускорение любого из них при помощи рибозима будет выгодно для этого рибозима. Рибозимы в принципе могут как ускорять уже идущие реакции синтеза и активации нуклеотидов, например синтез Сазерленда, так и пускать в дело отходы и побочные продукты – свободные азотистые основания, рибозу и нуклеозиды, которые образуются при распаде РНК и нуклеотидов. Кроме того, если конкурирующие молекулы РНК находятся в лабиринте пор в минеральном осадке, то между соседями вероятно возникновение кооперации, когда каждый из них ускоряет копирование не только самого себя, но и молекул, находящихся рядом. В таком сообществе будет разделение труда, когда одни рибозимы копируют РНК, а другие занимаются производством нуклеотидов для них. Так появляется обмен веществ: химические реакции между малыми молекулами, проходящие под контролем соседних молекул; такие помощники-контроллеры получили название «ферменты».
Ресурсы, которые потребляет это сообщество РНК, можно рассортировать по сложности использования. Проще всего применять, конечно, готовые активированные нуклеотиды, такие как АТФ и ГТФ (гуанозинтрифосфат, у которого три фосфатные группы присоединены не к аденину, а к гуанину), – это одновременно и строительный материал для новой РНК, и источник энергии. Следующими после готовых активированных нуклеотидов будут нуклеотид-монофосфаты – готовые строительные блоки РНК, но без запаса энергии. Еще немного сложнее использовать нуклеозиды – чтобы пустить их в дело, надо добавить фосфатную группу. И нуклеотид-монофосфаты, и нуклеозиды неизбежно появлялись при распаде цепочек РНК.
Следующие по сложности использования ресурсы – отдельные азотистые основания и рибоза, образующиеся из цианида и формальдегида. Они должны быть правильно соединены друг с другом, чтобы получились нуклеозиды. Затем, когда и этот ресурс использован, можно было попытаться ускорить превращение гликольальдегида, глицеральдегида, формальдегида и цианистых соединений в нуклеотиды. Наконец, когда весь цианидно-формальдегидный дождь стал быстро и эффективно превращаться в РНК, в конкуренции начали выигрывать те химические системы (возможно, их уже допустимо называть живыми организмами), которые освоили восстановление углекислого газа и получили неисчерпаемый источник углерода.
Как только кончаются готовые активированные нуклеотиды – и строительный материал, и запас энергии «в одном флаконе», – нужно осваивать другие источники энергии. В условиях грязевых котлов их много. Например, летящие с вулканическими газами оксиды фосфора, растворяясь в воде, дают полифосфаты, которые легко использовать для активации нуклеотидов. Можно получать энергию, окисляя фосфиты и гипофосфиты, образующиеся из тех же вулканических оксидов фосфора. Можно как-то пристраиваться к фотохимическим реакциям на кристаллах сульфида цинка или пытаться улавливать солнечный свет своими силами. Мы не знаем, какие из этих источников энергии были освоены РНК-организмами раньше, но в итоге, скорее всего, они все так или иначе использовались.
В лабораториях идет поиск рибозимов, которые проводили бы все эти реакции. Например, правильное соединение рибозы и азотистых оснований в нуклеозиды, которое так долго не удавалось сымитировать в абиогенных условиях, рибозимам вполне по силам. Путем искусственной эволюции были получены рибозимы, которые соединяют активированную форму рибозы (5-фосфорибозил-1-пирофосфат) с азотистыми основаниями, производя нуклеозиды. В клетках фосфорибозил-пирофосфат тоже является ключевым промежуточным продуктом на пути к нуклеозидам. Рибозим A15 соединяет с рибозой урацил и цитозин, а рибозим МА – аденин и гуанин (рис. 10.1). Оба они ускоряют соответствующую реакцию в миллионы раз (Martin et al., 2015).
Активация нуклеозидов путем добавления к ним трех фосфатных групп катализируется рибозимом TPR1 размером 96 нуклеотидов. В качестве источника фосфора и энергии он использует триметафосфат, промежуточный продукт растворения оксида фосфора в воде, который доступен в грязевых котлах. В водно-формамидном растворе фосфорилирование нуклеозидов может происходить даже без помощи рибозимов. Нужен только самый обычный фосфатный минерал гидроксилапатит Ca5(PO4)3OH, немного солей меди и нагревание до 80 °C. Медь используется для фосфорилирования нуклеозидов и в современных клетках, она входит в состав фермента пурин-нуклеозид-киназы.
Основной шаг, повторяемый в реакции Бутлерова, называется в химии «альдольная реакция» (рис. 10.2). Рибозимы, проводящие альдольную реакцию, тоже получены в эксперименте (Chen et al., 2007). Для превращения в катализаторы им необходимы ионы цинка, подобно их функциональным белковым аналогам – альдолазам класса II.
Для многих других химических реакций, нужных для производства нуклеотидов из простых молекул, возможностей чистой РНК недостаточно. Прежде всего, РНК неспособна к окислительно-восстановительным реакциям, следовательно, рибозимы не могут восстанавливать СО2 и использовать энергию окисления неорганических веществ, таких как сера, железо и водород. Белки, состоящие из 20 разных аминокислот, могут проводить гораздо больше химических реакций, но и их возможности ограничены. Более половины ферментов для работы нуждаются в дополнительных веществах – коферментах и микроэлементах. Например, для проведения окислительно-восстановительных реакций в наборе из 20 аминокислот есть цистеин, который может легко и обратимо окисляться и восстанавливаться. Однако большинство ферментов окисления и восстановления нуждаются в дополнительных веществах. Это могут быть коферменты НАД (никотинамидадениндинуклеотид) и ФАД (флавинадениндинуклеотид), железосодержащий кофермент – гем, железосерные кластеры, молибденоптериновый комплекс и ряд более экзотических веществ.
<<< Назад Глава 10 Витамины, аминокислоты и пептиды в РНК-мире |
Вперед >>> РНК и витамины |
- Глава IV КРУГОВОРОТ ЖИЗНИ И КРУГОВОРОТ ВЕЩЕСТВА В ПРИРОДЕ
- § 46. Типы обмена веществ у организмов
- Глава I Аварии с выбросом загрязняющих веществ в атмосферу и вопросы их математического моделирования
- Живое и минеральное вещество
- Приложение № 2 Токсические свойства и медико-биологические характеристики сильнодействующих ядовитых веществ
- § 40. Круговорот веществ и энергии в биосфере
- Микробы вырабатывают красящие вещества
- 1.4. Типизация выбросов загрязняющих веществ в атмосферу
- 5.1. Вредные вещества, поступающие в атмосферу при пожарах
- 3.10. Высота стабилизации вещества выброса
- 5.5. Опасные воздействия и вредные вещества в быту
- Приложение № 1 Справочная таблица взрывоопасных и токсичных веществ по ГОСТ 51330.19–99, ГОСТ 12.1.005-88, и ВСН 64-86