Книга: Три тайны жизни
Синтез белков
<<< Назад Нуклеиновые кислоты |
Вперед >>> Рекомендуем почитать |
Синтез белков
Когда установили, что молекулы белков не обладают способностью к самоудвоению, было высказано предположение о том, что между белками и нуклеиновыми кислотами существует связь. Специально проведенными опытами у живых клеток растений (корешков лука, гороха и др.) извлекали РНК, и тотчас в таких клетках прекращалось накопление белков. Опыты показали, что нуклеиновые кислоты участвуют в процессах синтеза белков. Но самые достоверные данные о непосредственном участии нуклеиновых кислот в синтезе белков были получены на вирусах.
Вирусы — весьма интересные образования. Они находятся на границе между живыми и неживыми телами. Эти чрезвычайно мелкие частицы удается увидеть только в электронный микроскоп. Размеры вирусов, например, полиомиелита (детского паралича) составляют 27 миллимикрон (миллимикрон — стотысячная часть миллиметра), желтой лихорадки — 22 миллимикрона, ящура — 21 миллимикрон.
По величине они приближаются к молекулам белков. Так, молекула гемоглобина крови лошади имеет размер 3X15 миллимикрон, а молекула альбумина (белка куриного яйца) составляет 2,5X10 миллимикрон.
Микрофотографии, полученные с помощью электронного микроскопа, дают представление о форме некоторых вирусов. Вирусные частицы способны склеиваться между собой, превращаясь при этом в кристаллоподобные образования. В кристаллическом состоянии вирусы могут сохраняться сотни лет и не проявлять признаков живой материи. Но стоит вирусной частице попасть в восприимчивую к нему живую клетку, и она начинает там стремительно размножаться. В этом одна из причин трудности борьбы с вирусными заболеваниями.
Все известные в настоящее время вирусы подразделяются на три большие группы в зависимости от того, с какими клетками способны они взаимодействовать: с бактериальными, растительными или животными.
Каждая вирусная частица (вирион) состоит из одной молекулы нуклеиновой кислоты и многих молекул белков. Нуклеиновая кислота является как бы сердцевиной, заключенной в белковую капсулу (капсид), или своеобразную «шубу» из белковых молекул. Белковые молекулы (капсомеры) расположены вокруг вирусной нуклеиновой кислоты в определенном порядке, образуя правильные геометрические фигуры шарообразной или палочковидной формы.
При встрече с клеткой, восприимчивой к данному вирусу, вирусная частица прикрепляется снаружи к ее поверхности. В оболочке клетки проделывается отверстие, что нередко осуществляется ферментами вируса, вызывающими распад веществ клеточной оболочки. (Например, во внешней оболочке вируса гриппа имеется особый фермент, вызывающий распад сложных белков, находящихся на поверхности клеточных стенок эпителиальной ткани дыхательных органов человека). В проделанное отверстие клетки-«хозяина» «впрыскивается» молекула нуклеиновой кислоты вируса. Белки же вирусной частицы лишь способствуют проникновению молекулы нуклеиновой кислоты в клетку, а сами остаются за пределами пораженной клетки.
Проникнув внутрь, молекула нуклеиновой кислоты вируса, не встречая сопротивления со стороны протоплазмы клетки, начинает быстро размножаться путем самоудвоения. Вначале она «штампует» несколько сот своих копий, затем эти копии начинают синтез белков, при этом синтез собственных белков пораженной клетки подавляется. Из только что созданных белков и ранее возникших копий молекулы вирусной нуклеиновой кислоты образуются новые вирусные частицы. Через несколько минут после проникновения в клетку одной молекулы вирусной нуклеиновой кислоты клетка-«хозяин» разрушается. Наружу выходят сотни вирусных частиц, являющихся точными копиями вируса, вначале поразившего клетку, и принимаются за разрушение еще здоровых клеток организма.
Механизм такого образования белков и целых вирусных частиц можно понять только в том случае, когда допустим, что последовательность аминокислот в белке, синтезируемом клеткой, определяется последовательностью нуклеотидов в молекуле нуклеиновой кислоты. Ведь точными опытами доказано, что вирусные белки в пораженную клетку не проникают. Единственным носителем информации о строении этих белков может быть только проникшая в клетку нуклеиновая кислота вируса. Остается только разгадать тайну, каким образом в молекуле нуклеиновой кислоты зашифрован план строения белка и как этот план синтеза видоспецифических белков осуществляется. Каким образом обеспечивается в клетке соединение аминокислот в длиннейшей цепи белка как раз в нужной последовательности?
Свойства белковой молекулы, как уже было отмечено, зависят от последовательности аминокислот в ее цепочке. Достаточно изменить порядок расположения хотя бы нескольких аминокислот в цепочке, как изменяются свойства всей молекулы белка. Это убедительно доказано на белке крови гемоглобина: при замене в молекуле гемоглобина электрически заряженной глутаминовой кислоты на электрически нейтральную аминокислоту валин белок крови теряет способность присоединять к себе кислород, появляется болезнь серповидноклеточная анемия.
Цепочки молекул нуклеиновых кислот тоже состоят из определенного порядка нуклеотидов. Данные, полученные на вирусах и других объектах, говорят о том, что в молекуле нуклеиновой кислоты «записано», или закодировано, химическое строение белковых молекул, то есть каждый белок «описывается» определенным участком нуклеиновой кислоты. Это означает, что последовательность аминокислот в данной белковой молекуле каким-то образом изображается последовательностью нуклеотидов соответствующего участка молекулы нуклеиновой кислоты. Получается так, что расстановкой одних веществ (различных аминокислот) управляют другие вещества (различные нуклеотиды). Такое изображение одних объектов другими в кибернетике[10]называется кодированием.
Так как белки определяют наследственные особенности организма, то синтез видоспецифических белков с помощью нуклеиновых кислот можно назвать кодированием наследственной информации.
Если бы количество различных типов нуклеотидов, встречающихся в нуклеиновых кислотах, соответствовало количеству различных аминокислот, входящих в состав белков, то можно предположить, что при наследственном кодировании каждая из аминокислот изображается определенным, соответствующим ей нуклеотидом. Например, валин — аденином, аланин — гуанином и т. д. Но такое предположение не соответствует действительности, потому что различных типов аминокислот десятки, а важнейших из них двадцать, тогда как различных видов нуклеотидов — всего четыре. Учитывая это обстоятельство, ученые вначале теоретически стали подыскивать такие комбинации, с помощью которых четыре вида нуклеотидов могли бы кодировать все аминокислоты. В технике имеются такие примеры. Например, в связи осуществляется передача разнообразных букв посредством всего двух электрических сигналов: положительным (+) и отрицательным (-) импульсами[11].
Ученые высказали мысль о том, не основано ли и кодирование наследственной информации на сходном принципе? Не изображается ли каждая аминокислота белка определенной комбинацией нескольких нуклеотидов в молекуле нуклеиновой кислоты? Вскоре эти предположения подтвердились: каждая аминокислота в клетке управляется тремя нуклеотидами из четырех существующих. Эти четыре нуклеотида — тимин (Т), аденин (А), цитозин (Ц), гуанин (Г), сочетаясь по три, могут дать шестьдесят четыре комбинации (или триплета), а важнейших аминокислот всего двадцать. Следовательно, одна и та же аминокислота может кодироваться несколькими триплетами. Эти триплеты, или кодовые обозначения, носят название «синонимов». Очень важно отметить, что триплеты могут «работать» во всех системах независимо от принадлежности их к организмам, то есть они синтезируют белки в препаратах, полученных из бактерий, из клеток различных растений или млекопитающих животных. Это обстоятельство еще раз, уже не на клеточном, а на молекулярном уровне, доказывает единство живой природы.
Сейчас уже можно считать окончательно установленным, что каждая из аминокислот, входящих в состав белков любого организма, действительно изображается комбинацией из трех нуклеотидов в молекулярной цепочке нуклеиновой кислоты.
Это открытие, как его принято называть — «расшифровка кода наследственности», — по праву считается одним из величайших научных достижений последних десятилетий в познании тайн живой природы.
Итак, молекулы белка образуются путем соединения в сложные цепи молекул аминокислот. Для образования нужного белка (способного в данном организме выполнять определенную функцию) аминокислоты должны соединяться между собой в строго определенной последовательности. Поэтому синтез конкретного, требуемого белка не может быть осуществлен простым перемешиванием аминокислот в присутствии катализаторов (в организме их роль выполняют ферменты) и других условий, обеспечивающих осуществление реакции. Необходим очень сложный физиологический «механизм», обеспечивающий своего рода «сборку» молекул белка из имеющихся в клетке в большом количестве разнообразных аминокислот по заранее определенному плану, закодированному в молекулах ДНК. Подобную «сборку» весьма сложной молекулы белка из отдельных аминокислот ни одна химическая технология пока еще осуществлять не может: такой процесс наблюдается исключительно только в живых клетках, почему он и получил название «биосинтез», то есть синтез с помощью живого организма.
Живая клетка любого организма содержит полный набор нуклеиновых кислот, в которых закодирована последовательность всех без исключения белков, какие только могут быть синтезированы в данном организме. Например, в клетках печени человека синтезируется около ста различных белков. Но этим не исчерпываются возможности синтеза белков клеток. Обычно в определенной клетке при данных условиях синтезируется всего лишь несколько видов белков. Так, в любой клетке человеческого тела имеется план «сборки» молекулы инсулина, гемоглобина, рибонуклеазы и других белков, но в действительности гормон инсулин образуется только в некоторых клетках поджелудочной железы, гемоглобин — в клетках мозга, рибонуклеаза — в клетках слюнных желез и некоторых других клетках.
Биосинтез белков осуществляется в рибосомах каждой клетки организма. Эти мельчайшие органоиды, видимые лишь в электронный микроскоп, являются своего рода «сборочным цехом» специфических белковых молекул. Рибосомы содержат большое количество так называемой рибосомальной рибонуклеиновой кислоты (сокращенно обозначают R-PHK). Кроме того, в цитоплазме клеток содержится другая форма рибонуклеиновой кислоты: ее назвали транспортной, или воднорастворимой, кислотой (сокращенно обозначают Т-РНК, или S-РНК). В ядре клетки образуется третья форма рибонуклеиновой кислоты — информационная (сокращенно обозначают И-, или М-РНК, то есть «мессенджер»-РНК[12]. Все три формы РНК отличаются между собой как по выполняемой ими функции, так и по сложности строения.
План строения белковой цепочки закодирован в ядре, в молекуле ДНК, а фактическая «сборка» белка осуществляется в рибосомах. Каким же образом передается из ядра в рибосомы информация об этом плане?
Оказывается, переносчиком этой информации является информационная РНК, которая образуется в ядре клетки во время биосинтеза белков. Молекула ДНК обладает как бы двумя свойствами: она строит на себе свои копии и молекулы информационной РНК. Во время деления клеток происходит удвоение ДНК, а в перерыве между делениями синтезируется М-РНК. Процесс удвоения ДНК происходит не сразу по всей длине ее молекулы. Двойная спираль расплетается постепенно с помощью особого фермента — ДНК-полимеразы, и по мере освобождения ее цепей на каждой из них достраивается вторая недостающая половинка.
Вторая функция ДНК — синтез М-РНК — осуществляется на разных участках молекулы ДНК, в зависимости от того, какой белок требуется в данный момент клетке. Эти участки, где происходят образования М-, или И-РНК, называются генами. Синтез М-РНК происходит с помощью другого специального фермента — РНК-полимеразы. При этом ДНК расплетается, по-видимому, только в небольшом участке, обнажая лишь несколько своих оснований. «Текст предписаний» о синтезе белка выдается не сразу, а по «буквам» или «словам», примерно так, как мы видим строку, когда читаем мелкий текст с лупой.
Считанная таким путем М-РНК отваливается от соответствующего локуса (или гена) молекулы ДНК и доставляется в рибосомы. Каждая рибосома состоит из двух неравных частей. Через меньшую проходит М-РНК, а в большей осуществляется образование полипептидных цепей и синтез белков.
Рибосому можно представить как станок с программным управлением. Работа такого автоматического станка зависит от информационной РНК, которая имеет определенную программу. Через молекулу М-РНК сразу проходит несколько рибосом. Иногда М-РНК может синтезировать не один, а несколько типов белков, в зависимости от того, со скольких генов была считана ее информация. Предполагают, что одна молекула М-РНК существует не более четырех-шести минут и за это время успевает наштамповать около двадцати однотипных белков (если РНК несет информацию только одного гена). Значит, специфика белка зависит от структуры информационной РНК, а не от рибосом. В одних и тех же рибосомах, например, кишечной палочки, в искусственных условиях синтезируют белки различных животных и даже человека, в зависимости от того, какая ДНК была задана в этот искусственно созданный синтезирующий комплекс.
Каким же образом доставляется необходимое «сырье»— различные аминокислоты — к месту «сборки» белковой молекулы? Доставка аминокислот в рибосомы производится с помощью сравнительно небольших молекул так называемой транспортной, или воднорастворимой, формы РНК. Эта РНК присоединяет на время аминокислоту и доставляет ее в рибосому. Освободившись от груза, она возвращается в цитоплазму за следующей аминокислотой. Наблюдения показывают, что каждая аминокислота имеет свою определенную транспортную РНК. Следовательно, транспортных РНК в протоплазме каждой клетки любого организма не менее двадцати — по числу важнейших аминокислот.
Молекула информационной РНК как бы пронизывает одну, чаще сразу несколько рибосом. Внутри каждой рибосомы находится сравнительно небольшое число нуклеотидных троек (триплетов). В этот момент молекулы транспортной РНК с «навешенными» на них аминокислотами приближаются к триплетам информационной РНК внутри рибосомы. При контакте кодового конца транспортной молекулы РНК, несущего определенную аминокислоту, с соответствующим ему триплетом информационной РНК происходит присоединение аминокислот к этим триплетам. То есть, к определенному участку информационной РНК внутри рибосомы может «прикрепиться» с помощью транспортной молекулы РНК только определенная аминокислота, закодированная данной тройкой нуклеотидов.
Схема синтеза белка в клетке.
Как только присоединение произошло, молекула информационной РНК продвигается сквозь рибосому на расстояние, равное заполнившей ее аминокислоте, и тем самым представляет следующий триплет для новой аминокислоты строящейся молекулы белка. При этом молекула транспортной РНК, отдавшая свою аминокислоту, уходит снова в цитоплазму за следующей свойственной ей аминокислотой. Таким образом, транспортные РНК совершают постоянный круговорот между цитоплазмой и рибосомами, доставляя исходное «сырье»— аминокислоты — для сборки определенных цепей белковых молекул.
Так синтезируются важнейшие белки — ферменты, которые ускоряют все химические реакции обмена веществ в организме.
Предполагают, что в каждой хромосоме человека содержится не менее пяти тысяч молекул ДНК, следовательно, в сорока шести хромосомах в каждой клетке, как минимум, может быть около трехсот тысяч молекул ДНК.
Каждая хромосома — это цепь линейно расположенных молекул ДНК, которые в свою очередь представляют собой цепочки генов. А каждый ген слагается из множества еще более мелких линейно расположенных единиц — нуклеотидов.
Весь этот сложнейший агрегат в ядре клеток работает очень точно, благодаря чему и осуществляется наследственность организмов из поколения в поколение.
Однако иногда случаются и «ошибки» в воспроизводстве молекул ДНК. Они могут произойти вследствие изменения отдельных нуклеотидов, а следовательно и генов, в молекулах ДНК. Подобные изменения называются молекулярными мутациями. Они происходят как вследствие внутренних перестроек нуклеотидных оснований в молекулах ДНК, так и под влиянием различных внешних физико-химических факторов (излучений и сильнодействующих химических веществ). Если молекулярные мутации происходят в молекулах ДНК половых клеток (мужских или женских гаметах), они передаются потомству, так как новый организм развивается из слившихся гамет зиготы. Причины появления подобных мутаций в настоящее время уже выяснены.
Установлено, что каждый ген управляет синтезом одной молекулы белка. Если произойдет химическое (мутационное) изменение в том или ином гене, то соответственно изменится аминокислотное звено в цепи синтезируемого белка. У вновь образованного белка исказятся ферментативные свойства, что может нарушить цепь тех реакций, в которых данный фермент принимает участие. В результате — нарушение обмена веществ со всеми вытекающими отсюда, иногда катастрофическими для организма, последствиями.
Современной медицине известны молекулярные наследственные болезни, связанные с нарушением обмена углеводов, аминокислот, жиров, пиримидинового обмена металлов, наследственные болезни крови и т. п. Но освещение этих вопросов не входит в нашу задачу.
* * *
Итак, вот и все, что мы собирались рассказать в этой маленькой брошюре о трех величайших открытиях биологической науки. Читатель, вероятно, уловил связь между ними и значение каждого из этих достижений для дальнейшего развития науки о жизни.
И действительно, ведь клеточная теория и эволюционное учение Дарвина явились решающими условиями, которые способствовали созданию диалектико-материалистического взгляда на живую природу. Именно эти два открытия, сделанные в прошлом веке, легли в основу грандиозных событий, которые ныне совершаются в биологической науке. Всестороннее и углубленное изучение клетки и ее содержимого породило новую отрасль в науке о жизни — молекулярную биологию.
За каких-нибудь десять-пятнадцать лет своего существования молекулярная биология добилась исключительных успехов: выяснены природа вирусов и механизм вирусных инфекций, расшифрованы основные этапы биосинтеза белка, раскрыта сущность генетического кода, основанного на молекулярной структуре ДНК, а это в свою очередь позволило уяснить природу наследственных изменений (мутаций), лежащих в основе эволюции и изменчивости живого мира. Исследования на молекулярном уровне привели к выводу о том, что синтез белка в живой клетке связан со свойством наследственности, то есть, что наследственность любого организма реализуется в процессе синтеза белка.
Достижения молекулярной биологии начинают входить и в практику. В настоящее время ведется успешная профилактическая и лечебная работа, направленная на борьбу с вирусными инфекциями, раковыми заболеваниями, а также с наследственными болезнями человека.
Расшифровка первичной структуры ряда белков позволила искусственно создать некоторые ценные ферменты и гормоны, причем, что особенно важно, синтезируемые белки обладают той же биологической активностью, что и природные.
Изучение проблемы биосинтеза белка в клетке открывает широчайшие перспективы. Получение синтетических белков позволит не только экспериментально создать материальные основы жизни, о чем мечтал еще Ф. Энгельс, но и получать необходимые продукты для пищевых, кормовых и лечебных целей. Решение последней проблемы навсегда избавит человечество от капризов природы, которая еще оказывает существенное влияние на экономику общества. Поэтому вполне справедливо наше столетие называется веком биологии.
<<< Назад Нуклеиновые кислоты |
Вперед >>> Рекомендуем почитать |
- 3.3. Всем известный ацетилен
- Что такое вкус
- § 35 Трение и сопротивление среды
- Волк. Вопросы онтогенеза поведения, проблемы и метод реинтродукции
- Корабли Северо-Западной Европы
- 203. Основные положения координационной теории.
- Эпилог Пан или морлок: биологическое будущее человека
- Значения «начала бесконечности», встречающиеся в этой главе
- Путешествие хирурга по телу человека
- Библиография
- 8.2. Можно ли путешествовать во времени?
- Шпанка ясеневая, или нарывник (Lytta vesicatoria L.)