Книга: Солнечная система (Астрономия и астрофизика)

Пояса, зоны, вихри и ветры

<<< Назад
Вперед >>>

Пояса, зоны, вихри и ветры

Хотя Сатурн весьма удален от Земли, он представляет собой один из красивейших небесных объектов даже при наблюдениях с телескопом умеренного размера. Подобно Юпитеру, Сатурн имеет развитую систему поясов и зон. Однако они никогда не бывают видны так ясно, как полосы на Юпитере. Если добавить к этому вдвое большую удаленность Сатурна, трудности исследования планеты с Земли становятся очевидными. И все же астрономам иногда удавалось проследить движение каких-то малоконтрастных пятен, что и позволило найти зональные периоды вращения Сатурна. Но с борта космического зонда видно намного больше подробностей. «Вояджеры-1 и -2» прошли в 1980-81 гг. мимо Сатурна с интервалом в девять месяцев, что позволило проследить за изменением деталей на диске планеты.

Поверхность облачного слоя, которая плохо различалась в 1980 г., в следующем году стала видна довольно ясно. Определяющую роль в этом могла сыграть смена сезонов на Сатурне, где началась весна в северном полушарии. Поскольку наклон экватора к плоскости орбиты составляет у Сатурна 29°, смена времен года там должна приводить к большим, чем на Земле, перепадам притока солнечного тепла в каждом из полушарий. Уже на расстоянии шести недель пути на снимках «Вояджера-2» можно было различить циклонические образования в различных районах планеты. Последовательные снимки помогли детально проследить развитие циклонов.


По аналогии с Большим Красным Пятном Юпитера одно из найденных на Сатурне гигантских овальных образований назвали Большим Коричневым Пятном (БКП). Метеорология Сатурна и Юпитера сходна не во всем. В отличие от антициклонических деталей Юпитера, не поднимающихся выше широт 60°, пояса и зоны Сатурна доходят до очень высоких широт. БКП Сатурна лежит всего в 16° от северного полюса. В отличие от Юпитера, атмосферные потоки, движение которых заметно на фоне облачного слоя и чаще всего направлено к востоку, наблюдаются на очень высоких широтах, вплоть до 78°. Скорость таких потоков достигает 600 м/с. Рядом с ними можно видеть коричневые пятна — это ураганы, причем наибольшие из них по диаметру достигают половины земного шара. Скорость на периферии ураганов сравнительно невелика, около 30 м/с. Из-за существенно большей скорости потоков, чем на Юпитере, эти ураганы быстро затухают, врастая в потоки и обмениваясь с ними энергией.

Небольшой приток солнечного тепла не мог бы обеспечить активную динамику атмосферы Сатурна. Как и на Юпитере, образование вихрей определяется источниками энергии, упрятанными глубоко в атмосфере. Подробные снимки районов умеренных широт показывают большое число местных ураганов с диаметром вихрей 1000 км. и более. Скорость зональных ветров на Сатурне очень велика. В районе экватора она достигает 400—500 м/с, что в 4 раза выше, чем на Юпитере. Однако на широтах 30° и выше скорости меньше, имеют периодический широтный характер и не превышают 100 м/с. По-видимому, время жизни крупных вихрей в атмосфере Сатурна невелико по сравнению с Юпитером, так как сильные ветры разрушают вихри. По данным «Вояджеров» широтное распределение ветров в южном полушарии зеркально повторяет это распределение в северном полушарии. Тем не менее, различие атмосферной динамики двух полушарий становится заметным в их полярных областях.

Протяженный облачный слой и быстро нарастающая в глубину плотность атмосферы значительно ослабляют солнечный свет.

На глубине 350 км. под поверхностью облаков может быть темно. Реальная освещенность зависит от того, каковы характеристики рассеяния света в атмосфере Сатурна. Поскольку предполагается, что структура и состав облачного слоя Юпитера и Сатурна сходны, нижняя граница облаков находится в пределах одной и той же температуры — около 150 К. Но из-за вчетверо меньшего количества тепла, получаемого на единицу площади, верхняя граница облачного слоя Сатурна не совпадает с ее положением у Юпитера. В отличие от Юпитера, спектральные полосы аммиака у Сатурна выражены слабо. Это связано с низкими температурами в надоблачной атмосфере, где пары аммиака вымораживаются. Образующийся именно здесь довольно плотный слой тумана скрывает структуру поясов и зон, которая так хорошо видна на Юпитере.

За спутниками Сатурна тянутся хвосты из нейтральных и ионизованных молекул и атомов газа, образующие гигантские торы на орбитах. Один из таких торов связан с атмосферой Титана — крупнейшего спутника Сатурна и второго по размеру и массе среди спутников планет (на первом месте спутник Юпитера Ганимед, и оба они крупнее Меркурия!).

Поверхность Титана, диаметр которого 5152 км., неразличима сквозь плотную атмосферу, имеющую давление у поверхности 1,5 бара и состоящую на 98,4% из азота и на 1,6% из метана.


В ней также обнаружено небольшое количество этана, пропана, ацетилена, аргона, окиси и двуокиси углерода, гелия и других газов. Температура верхних слоев атмосферы Титана близка к —120°С, а температура поверхности —179°С. Туман в атмосфере рассеивает и отражает солнечные лучи, создавая «антипарниковый эффект», снижающий температуру поверхности. Днем поверхность освещена не ярче, чем в сумерки на Земле. Поверхность Титана состоит изо льда с примесью силикатных пород. Средняя плотность спутника 1,88 г/см3. Магнитного поля у Титана нет. Сила тяжести там в 7 раз слабее земной, так что, учитывая высокую плотность воздуха, человек на Титане, вероятно, смог бы летать, укрепив на руках крылья.

Измеренная яркостная температура внешнего слоя облаков на Сатурне составила всего 80—90 К, а эффективная температура планеты 95 К. Плотность потока солнечной энергии, достигающий Сатурна, в 91 раз меньше, чем на Земле. Солнце на небе Сатурна выглядит совсем маленьким диском, почти в 10 раз меньшим, чем при наблюдении с Земли. С учетом альбедо, несмотря на огромные размеры Сатурна, он получает в 2,7 раз меньше энергии, чем наша маленькая Земля. На этом фоне весьма заметны собственные источники энергии: тепловой поток от Сатурна, по разным оценкам, в 1,9—2,2 раза превышает поток энергии, получаемой от Солнца. Отчасти это реликтовое тепло, но не только оно.

В качестве дополнительного источника энергии называют гравитационную дифференциацию. Согласно одной из наиболее реалистичных гипотез, более тяжелый гелий медленно погружается к центру планеты, а водород всплывает; это движение вызывает выделение тепла, в конечном счете излучаемого в космос. Эта гипотеза находит подтверждение: в атмосфере Сатурна содержится 94% водорода (по объему), а гелий составляет почти все остальные 6%. Напомним, что в атмосфере Юпитера гелия около 11 %. Если средний состав обеих планет одинаков, такое различие действительно может указывать, что значительная доля гелия на Сатурне «утонула». Схема внутреннего строения Сатурна приведена на рис. в разделе «Юпитер».

<<< Назад
Вперед >>>

Генерация: 0.421. Запросов К БД/Cache: 3 / 1
Вверх Вниз