Книга: Занимательная астрофизика

«Соты» Вселенной

<<< Назад
Вперед >>>

«Соты» Вселенной

Наблюдая с помощью все более совершенных телескопов все более далекие космические объекты, мы не только проникаем все дальше в глубины мирового пространства, но и получаем возможность изучать ранние стадии эволюции Вселенной. Ведь чем дальше от нас находится тот или иной космический объект, тем больше времени затрачивают световые лучи, чтобы преодолеть расстояние, отделяющее его от Земли, и, следовательно, в тем более отдаленное прошлое мы заглядываем.

Но далекое прошлое проявляет себя и в современных состояниях космических объектов и их систем. Эти состояния — как бы «следы минувшего». Их изучение — ключ к познанию истории нашей Вселенной.

В современной астрофизике существует несколько гипотез или, как сейчас стало модно говорить, «сценариев» происхождения галактик. Один из них можно назвать сценарием фрагментации. Его разрабатывает группа советских ученых под руководством академика Я. Б. Зельдовича. Согласно этому сценарию, звездные острова сформировались в результате существования неоднородностей плотности, возникших на одной из ранних стадий эволюции Вселенной, когда еще не было ни звезд, ни галактик, а среда представляла собой нейтральную смесь водорода и гелия, достаточно равномерно распределенную в пространстве. Тем не менее в различных точках плотность среды могла несколько различаться. Возникшие на еще более ранней стадии расширения, когда во Вселенной доминировало излучение, а плазма была ионизована, небольшие возмущения плотности теперь стали расти. Как считает группа Я. Б. Зельдовича, сперва эти возмущения представляли собой плоские волны очень большой длины. Под действием сил тяготения гребни этих волн становились все круче и круче, вследствие чего возникали плоские и плотные газовые образования дискообразной форумы.

Газ в трехмерном пространстве можно сжать в любом из трех взаимно перпендикулярных направлений. Однако в природе одновременное сжатие газа вдоль трех или даже двух осей — явление маловероятное. Как правило, в каждом элементарном объеме имеется одно преимущественное направление сжатия.

В результате такого сжатия должны были образоваться тонкие плотные слои, которые в шутку назвали «блинами» (рис. 5). Это были первые обособленные объекты Вселенной. С течением времени внутри «блинов» складывались условия для рождения галактик и звезд. Сначала формировались сверхскопления галактик, потом они дробились на галактики и шаровые звездные скопления. Этим сценарий фрагментации отличается от другого сценария — сценария скучивания, сторонники которого полагают, что сперва возникали шаровые скопления, которые затем объединялись в галактики, а те, в свою очередь, — в скопления галактик и сверхскопления. Какой из этих сценариев ближе к действительности? Математические расчеты расчетами, но ответ могут дать только наблюдения. Только они, в конечном счете, могут либо подтвердить выводы теоретиков, либо их опровергнуть.

Что же предсказывает гипотеза фрагментации? Из нее следовало, что вне «блинов», в пространстве между ними, газ был настолько сильно разрежен, что в таких областях галактики формироваться не могли. Для этого потребовалось бы время, превосходящее продолжительность существования Вселенной. А отсюда следовал довольно неожиданный вывод: в процессе увеличения размеров «блинов» и их взаимных пересечений должна была образоваться сложная «пористая» структура, состоящая из ячеек, по стенкам которых сконцентрированы галактики. А во внутренних областях этих ячеек галактик быть не должно. (Иногда эти области образно называют «черными областями».)


Рис. 5. Моделирование возникновения «блинов» на ЭВМ. «Блины» видны с ребра в виде полос, вдоль которых концентрируются частицы.

Однако осуществить наблюдательную проверку этого предсказания далеко не так просто, как может показаться на первый взгляд.

Представим себе на минуту, что о нашего земного неба исчезли все звезды нашей Галактики, и мы невооруженным глазом можем наблюдать далекие «звездные острова». Мы обнаружим, что в одних местах их больше, в других меньше, хотя в общем галактики заполняют все небо. Но это картина, которую мы наблюдаем в проекции на небесную сферу.

А какие «узоры» образуют галактики в пространстве? Чтобы ответить на этот вопрос, т. е. составить представление о пространственном распределении звездных островов, необходимо знать расстояния до каждого из них. Но определение расстояний до отдельных галактик — задача очень сложная. Обычно она решается путем измерения величины красного смещения в спектрах этих звездных систем. Мы уже говорили о том, что наша Вселенная расширяется, что галактики удаляются друг от друга. Но если источник светового излучения от нас удаляется, то возникает так называемый эффект Доплера — смещение спектральных линий к красному концу спектра, пропорциональное скорости удаления (в случае приближения источника света линии в спектре смещаются к фиолетовому концу).

В 1929 г. американский астроном Э. Хаббл показал, что красное смещение галактик возрастает с увеличением расстояния до этих объектов. Чем дальше от нас находится та или иная галактика, тем быстрее она удаляется. Оказалось, что эта зависимость носит линейный характер, т. е. значение одной величины прямо пропорционально значению другой,

VR = HR, (1)

где R — расстояние до наблюдаемого объекта, a VR — скорость удаления галактики, находящейся на расстоянии R. Коэффициент пропорциональности Н получил название постоянной Хаббла.

Зная доплеровское красное смещение того или иного внегалактического объекта, можно определить его скорость VR,


где с — скорость света, ? — фактически наблюдаемая длина волны, а ?0 — длина волны той же спектральной линии, излучаемой неподвижным источником.

Таким образом, если нам известно значение постоянной Хаббла, то, определив скорость удаления интересующего нас внегалактического объекта по формуле (2), мы можем по формуле (1) вычислить расстояние до нею.

Выражение


которое входит в формулу (2), обозначается буквой z,


Приравнивая правые части формул (1) и (3), получим для z,


Таким образом, в первом приближении величина z прямо пропорциональна расстоянию до внегалактического объекта и скорости его удаления. (Заметим, кстати, что в первом приближении z значительно меньше единицы, поскольку VR значительно меньше с).

Таким образом, чем больше г, тем дальше от нас находится тот или иной внегалактический объект и тем быстрее он удаляется.

Но точное измерение расстояний до галактик по красному смещению, т. е. с помощью постоянной Хаббла, требует весьма сложных наблюдений. Поэтому те данные, которыми располагали на этот счет астрономы, долгое время не отличались точностью. А неточные наблюдения — это бич естественных наук, ибо на основе неточных наблюдений легко можно сделать ошибочные выводы. Как говорил академик Л. А. Арцимович, нет ничего хуже неточных наблюдений, подтверждающих неточную теорию…

В середине 60-х годов наиболее далекому объекту, обнаруженному астрономами, соответствовало z = 0,46. Однако в последние годы совершенствование методов астрономических наблюдений позволило измерять красное смещение для чрезвычайно слабых оптических объектов и благодаря этому приступить к поиску еще более далеких галактик. Для этой цели применялась современная электронная аппаратура.

Было использовано то обстоятельство, что существуют галактики g очень яркими линиями излучения — эмиссионными линиями, которые удается обнаруживать раньше, чем остальной спектр. Таким методом было зарегистрировано свыше 10 галактик, для которых ??/?0 больше, чем 0,5. Четыре из этих галактик оказались наиболее далекими. Это объекты ЗС 13 (z=1,050), ЗС 356 (z=,079), ЗС 368 (z=1,132) и ЗС 4271 (z=1,175)…

В 1977 г. эстонские астрономы — группа под руководством члена-корреспондента АН ЭССР Я. Э. Эйнасто — установили, что в созвездии Персея есть большая область, свободная от галактик («черная область»).

В настоящее время, с помощью новейших методов астрономических наблюдений, оценены расстояния примерно до 10 тысяч галактик. Это позволяет воспроизвести картину их распределения уже не только на небесной сфере, но и в трехмерном пространстве. Статистическая обработка полученных данных позволила обнаружить несколько достаточно больших областей, внутри которых галактики практически отсутствуют.

Выяснилось, что галактики в сверхскоплениях действительно образуют своеобразные «сети» в виде дуг, перемычек и стенок гигантских ячеек, напоминающих пчелиные соты. Протяженность каждой стороны такой ячейки — порядка 100 млн. световых лет.

В частности, американские астрономы сообщили о том, что им удалось обнаружить свободную от звезд и галактик область с поперечником около 300 млн. световых лет. Они изучали распределение звездных островов вдоль трех, близко расположенных прямых линий, направленных в глубины Вселенной. В результате такого зондирования обнаружилось, что по избранным направлениям в промежутке между «отметками» 240 и 360 мегапарсеков[5]) (соответственно около 500 млн. и 800 млн. световых лет) находится одна-единственная галактика. Наоборот, вблизи указанных «отметок» галактики расположены достаточно густо. Ориентировочный объем открытой учеными полости составляет около 1 млн. кубических мегапарсеков или 3·1064 см3.

Открытие сетевой структуры сверхскоплений галактик, если ее повсеместный характер подтвердится дальнейшими наблюдениями, имеет чрезвычайно важное значение для понимания особенностей строения и эволюции нашей Вселенной.

Дело в том, что сетевая структура неустойчива. Это, возможно, и служит причиной того, что систем более высокого порядка, чем сверхскопления, в нашей Вселенной не существует. Не исключено, что именно поэтому иерархия звездных систем обрывается на сверхскоплениях. Устойчивыми образованиями наиболее крупного масштаба являются скопления галактик. Правда, в современной Вселенной существует и следующая ступень иерархии — сверхскопления галактик. Но они рассеиваются и представляют собой временную фазу пространственного распределения звездных систем.

По-видимому, это говорит о том, что мы живем на некоем промежуточном этапе эволюции нашей Вселенной, этапе не слишком молодом, но и не слишком старом, когда структуре Вселенной еще предстоит измениться весьма существенным образом. По некоторым оценкам продолжительность этапа эволюции, на протяжении которого сохраняется сетевая структура в распределении галактик, — порядка 10 млрд. лет.

С другой стороны, сетевая структура сверхскоплений галактик как-то возникла. Она сформировалась из какого-то предшествующего состояния, которое, в свою очередь, тоже образовалось не на «пустом месте». Эта «цепочка» последовательных состояний, в конце концов, приведет нас к тому отдаленному этапу эволюции нашей Вселенной, когда складывались «зародыши» будущих космических объектов и их систем, которые составляют структуру современной Вселенной. Иными словами, сетевая структура сверхскоплений галактик отражает определенные начальные условия, которые и привели к подобному положению вещей. Какие? Возможно, ответ на этот вопрос сможет дать теория «блинов».

Правда, между этой теорией и наблюдаемой сетевой структурой обнаружились и некоторые несоответствия. Дело в том, что во всех обнаруженных полостях встречаются так называемые галактики Маркаряна — активные галактики с избыточным ультрафиолетовым излучением[6]). Между тем с точки зрения «блинной» теории должны существовать и полости, которые заполняет только ионизованный газ, но нет условий для образования галактик.

Таким образом, соотношение между «блинной» теорией и наблюдениями оказывается достаточно сложным. С одной стороны, теория предсказывает существование сетевой структуры, а с другой — не все ее выводы подтверждаются наблюдениями, а некоторые факты даже вступают с нею и в противоречия.

Но, вообще говоря, было бы трудно ожидать, чтобы сравнительно молодая теория, описывающая столь сложный процесс, как формирование галактик, к тому же процесс, удаленный от нас во времени на миллиарды лет, не стал иным излучением космической среды. На этом фоне выделяются отдельные дискретные источники — это второй класс космических «радиостанций».

Одним из важнейших открытий астрономии второй половины XX в., значительно расширившим наши представления о Вселенной, было обнаружение внегалактических источников радиоизлучения — радиогалактик. Большинство внегалактических радиообъектов составляют звездные системы, подобные нашей, — их называют нормальными галактиками. Радиоизлучение ближайших нормальных галактик (в частности, знаменитой галактики в Андромеде) имеет такие же свойства, как и радиоизлучение нашего звездного острова.

Однако есть галактики, которые резко отличаются от нормальных своим исключительно мощным радиоизлучением. Они излучают в радиодианазоне в сотни и даже миллионы раз больше энергии, чем нормальные. Один из самых известных объектов такого рода — радиоисточник в созвездии Лебедя. Подобные галактики и получили название радиогалактик. Поток радиоизлучения от галактики в Лебеде, принимаемый на Земле, такой же, как и от одного из самых интенсивных галактических радиоисточников — остатка сверхновой в Кассиопее. Но при этом расстояние до источника в Лебеде в 50 000 раз больше.

Как выяснилось, излучение радиогалактик, подобно радиоизлучению Крабовидной туманности, имеет синхротронную природу. Но если в Крабовидной туманности электроны приобрели околосветовые скорости в результате взрыва сверхновой звезды, то какие источники энергии работают в радиогалактиках? Источники, способные поддерживать их мощное радиоизлучение на протяжении многих миллионов лет?

Сейчас уже мало кто сомневается в том, что таким источником являются очень мощные физические процессы, протекающие в центральных частях радиогалактик — их ядрах.

Среди космических радиостанций особое внимание привлекают к себе уже известные нам квазары. В настоящее время зарегистрировано свыше 1500 квазаров. Внешне, для неспециалиста, квазары — довольно невзрачные объекты. На чувствительных астрономических фотопластинках они выглядят как крошечные звездообразные объекты (рис. 7). Однако астрономы были поражены, когда выяснилось, что эти объекты находятся от нас на огромных расстояниях — в миллиарды световых лет.

Одним из самых близких к нам квазаров является квазар ЗС 273[7]). Именно этот квазар и был открыт первым. Но даже он находится от нас на столь большом расстоянии, что мы наблюдаем его таким, каким он был несколько миллиардов лет назад. Одиночная звезда при таком удалении наблюдаться не может.


Рис. 7. Квазар ЗС 273. Справа вверху — «выброс».

Исходя из этого, можно заключить, что энерговыделение квазаров огромно. Светимость всей нашей Галактики составляет около 1037 Вт. У квазаров она на несколько порядков выше! А общее количество энергии, выделяемой квазарами, оценивается в 1054 Дж. Это в 10 триллионов раз больше, чем выделило Солнце за все время своего существования. Такого количества энергии вполне достаточно, чтобы поддерживать наблюдаемое энерговыделение квазаров на протяжении сотен тысяч лет.

К этому следует добавить, что оптическое излучение многих, квазаров является переменным. И в максимуме оно может достигать фантастической величины. Так, например, квазар ЗС 279 несколько десятков лет тому назад обладал светимостью, в 10 тысяч раз превосходящей светимость нашей Галактики! Когда же были определены размеры компактных, радиоисточников, связанных с квазарами, астрономы удивились еще больше. Выяснилось, что эти объекты гораздо меньше даже одиночных галактик. Их диаметры не превышают одного светового года. Напомним, что поперечник нашей Галактики — около 100 тыс. световых лет.

Тем не менее имеются серьезные основания предполагать, что квазары и галактики эволюционно связаны. Во всяком случае есть одно очень весомое соображение в пользу того, что квазары — объекты, которые характерны для более ранних стадий истории нашей астрономической Вселенной, чем галактики. В самом деле, все квазары находятся от нас на огромных расстояниях в миллиарды световых лет. Следовательно мы видим их такими, какими они были много миллиардов лет назад. На этом основании можно сделать вывод, что квазары — образования, которые были характерны для Вселенной много миллиардов лет тому назад и не свойственны ее современному состоянию.

Однако, по вопросу о характере связи между квазарами и ядрами галактик существуют две точки зрения. Согласно одной из них, в центре галактики, в совокупности большого количества звезд и газа образуется сравнительно не-1 большое (размером 1016-1017 см), но гигантское по масса (порядка 108-109 масс Солнца) ядро. Если галактика медленно вращается, то формирование такого ядра представляется довольно естественным: газ и звезды как бы «стекают» в «потенциальную яму», т. е. в ограниченную область, расположенную в центральной части галактики, в которой потенциальная энергия частиц меньше, чем вне ее. С точки зрения подобной гипотезы колоссальная светимость квазаров объясняется выделением при гравитационном сжатии огромного количества энергии.

Согласно другой гипотезе, квазары могут быть ранней стадией эволюции звездных систем — «голыми ядрами» еще не родившихся активных галактик. Они образовались раньше, чем галактики, и уже затем «обрастали» звездами.

<<< Назад
Вперед >>>

Генерация: 0.634. Запросов К БД/Cache: 0 / 2
Вверх Вниз