Книга: Чем мир держится?

Тяготение, работай!

<<< Назад
Вперед >>>

Тяготение, работай!

Есть что-то приторное в заявлениях, будто наука обгоняет фантастику, разве что следует рассматривать такие заявления, как сугубо риторические, которым не верят и сами их авторы. Функция фантастики, ее прямое назначение — опережать науку, заглядывая в будущее. Выполнить такое назначение тем легче, что на будущее-то научная фантастика смотрит с высоко поднятых вверх ладоней своей кормилицы-науки.

Есть, однако, по крайней мере один случай, когда фантастика не угналась за наукой. Радио как средство связи не было угадано писателями. И Жюль Верн с запоздалой торопливостью вставил его в один из своих романов уже спустя достаточно много времени после открытия Александра Попова. Уж больно, наверное, антинаучно звучал бы до 1895 года рассказ о связи на многотысячекилометровом расстоянии без проводов… Открытие радио развязало фантастам руки, освободило еще одно направление для путешествий воображения. И о гравитационной связи, связи на гравитационных волнах писали уже не раз. Часто, впрочем, принимая при этом, что скорость их много выше скорости света. На самом деле скорость гравитационных волн равна скорости света, и, значит, выигрыша во времени тут получить не удастся, но во многих других отношениях грависвязь должна иметь огромные преимущества перед радио.

Ну, во-первых, для радиоволн практически непроницаемы многие твердые тела и жидкости. А гравитационные волны не знают серьезных преград. Они глубоко проникают в тела звезд и планет, способны проходить сквозь них, как свет проходит сквозь стекло.

В современной радиоволновой технике одна из главных, если не просто главная задача, — борьба с помехами связи; так называемая магнитная буря и даже обыкновенная гроза способны доставить массу неприятностей радистам. Ученые, занимающиеся проблемами радиосвязи, утверждают, что большая половина сил в их области деятельности уходила и уходит на защиту аппаратуры от помех все новыми и новыми способами. И хотя успехи тут достигнуты немалые, но решить эту проблему до конца, по-видимому, просто невозможно; такова уж природа радиоволн, а с природой не поспоришь.

Гравитационные волны от природы помехоустойчивы — идеальное в этом смысле средство связи на любом расстоянии. И недаром же у многих физиков вызывают скептическое отношение попытки связаться с внеземными цивилизациями на радиоволнах: на нашей планете радиосвязь существует всего восемьдесят с небольшим лет, и никак нельзя поручиться, что при стольких-то недостатках она продержится хотя бы еще восемьдесят лет; конечно, при условии, что ей найдется замена. Может быть, у цивилизаций в других мирах срок временного пользования радиосвязью был еще короче, поскольку они овладели связью гравитационной.

Не исключено, что мы сначала научимся передавать и принимать искусственно созданные гравитационные волны, а уже потом создадим гравитационную астрономию, о которой шла речь в предыдущем разделе.

Но тогда дело дойдет обязательно и до попыток поймать идущие от внеземных цивилизаций сигналы на гравитационных волнах. Уже опубликованы некоторые интересные проекты, посвященные проблеме организации таких попыток. Например, советский ученый Л. X. Ингель поместил в «Астрономическом журнале» статью, в которой предложил использовать эффект фокусировки гравитационных волн для облегчения их приема[21]. В качестве гигантской линзы выступает здесь само Солнце, и оно способно преломить гравитационные волны, как стеклянная линза преломляет лучи света. Гравитационные волны материальные, они обладают массой, стало быть, искривленное Солнцем пространство-время должно искривлять и их путь через само Солнце, как искривляет оно лучи света.

В пучке гравитационных волн, проходящем через Солнце, волны по-разному отклонятся от своего прежнего пути в зависимости от того, через какие участки нашей Дневной звезды они идут. Поток гравитонов, пересекший центр светила, так и останется прямым — сила тяжести в центре Солнца равна нулю. Но чем дальше от этого центра к краю, тем сильнее отклонятся гравитоны. И параллельный пучок гравитационных волн окажется в конечном счете сфокусированным. Ингель нашел и место фокуса. По его расчетам, гравитационные волны, в прошлом параллельные, соберутся в одну точку в сорока миллиардах километров от Солнца. Много это или мало? С одной стороны, это расстояние равно миллиону земных экваторов. С другой стороны, еще Маяковский отметил, что «даже до луны расстояние советскому жителю кажется чепухой», а с тех пор, как были написаны эти строчки, земляне вообще приучились не удивляться астрономическим цифрам. Миллион экваторов в такой ситуации — размер, мало что говорящий не астроному. Остается сказать, что радиус орбиты последней (во всяком случае — последней большой) планеты в нашей Солнечной системе — Плутона — примерно шесть миллиардов километров. Итак, «гравитационный фокус» Солнца находится на расстоянии всего лишь в шесть и шесть десятых раза большем.

Прикинем: Луна (расстояние триста восемьдесят тысяч километров) достигнута «безлюдными» ракетами в начале шестидесятых годов, Марс в конце шестидесятых, человек высадился на Луне в 1968 году, на Марсе высадится, по-видимому, в восьмидесятых годах. Ей-ей, не так уж далеко при таких темпах и до Плутона и до гравитационного фокуса — точнее, до воображаемой сферы, на которой размещены точки таких фокусов.

Солнце, как известно достаточно точно, круглое. Оно одно может служить линзой для любых пучков гравитационных волн, из каких бы точек небосвода эти волны ни приходили к нему. Место фокуса на сфере радиусом в сорок миллиардов километров будет, конечно, меняться в зависимости от того, откуда именно придут сигналы. Пункт, на который придется фокус, сможет найти космический корабль с Земли с гравитационным приемником на борту.

Точно так же, как в случае с радиоволнами, такой способ приема космических сигналов фантастика предложить не успела. Как не успела она предложить и построенный по тому же принципу «эксплуатации» Солнца способ передачи гравитационных волн. Надо «просто» поставить на тот самый корабль, что обнаружил очередную точку гравитационного фокуса, гравипередатчик и из этой самой точки отправить гравитационный волновой сигнал к Солнцу. Все произойдет в обратном порядке. Пучок гравитонов по дороге несколько разойдется. Солнце сделает сто почти параллельным, отклонив волны с их прежних путей. Вырвавшись из Солнца, гравитоны устремятся к той самой звезде, которая послала нам свой сигнал: неведомый наш корреспондент окажется найденным, так сказать, автоматически.

Конечно, законы физики заставят пучок гравитационных волн слегка расходиться по дороге через космическое пространство, но, согласно выводам Ингеля, для пучка диаметром в тысячу километров такое расхождение не станет серьезным на расстоянии порядка десяти тысяч световых лет. Ближайшая к нам звезда находится всего в четырех целых и трех десятых светового года от Земли, а расстояния до самых дальних звезд нашей Галактики составляют примерно сто тысяч световых лет. Значит, так мы сможем связаться со значительной частью «местных» звездных систем при условии, что в них есть цивилизации, освоившие гравитационную связь. А если дело обстоит именно так, то их дежурные корабли давно совершают патрульные полеты по сфере гравитационного фокуса своих солнц.

Конечно, размеры такой сферы даже страшно себе представить, как страшно и подсчитывать количество космических аппаратов, потребных для ее патрулирования. Даже если учитывать расположение звезд, откуда можно ждать сигналов. Страшно потому, что это относится и к соответствующей солнечной сфере. И все-таки… Раз сегодня ученые придумывают такие вещи, послезавтра они сумеют воплотить их в жизнь, если не найдут чего-то лучшего.

Солнце в роли ретранслятора (со всеми оговорками насчет неточности сравнения), Солнце в роли почтальона, направляющего послание по адресу, Солнце в роли… ряд сравнений можно продолжить. И все эти роли оно сможет играть не потому, что согревает и освещает Землю, а только в силу того, что обладает большой массой и соответственно мощным тяготением. Остается добавить, что здесь говорилось в связи с гипотезой Ингеля о поведении в гравитационном поле светил именно гравитационных волн постольку, поскольку это вдвойне отвечало теме данной книги. Но сам Ингель указывает, что совершенно аналогичные явления происходят при проходе через Солнце пучка нейтрино — конечно, потому, что нейтрино тоже идут через пространство-время, искривленное огромной массой Солнца.

Связь с помощью радиоволн — лишь малая часть того, что получило человечество, овладев электромагнитной энергией — тем, что в просторечии зовется электричеством. А как будет с гравитацией?

Представим себе только: найдя путь к использованию тяготения, мы откроем для себя самые большие энергетические «залежи» из возможных; мало того, «залежи» высшей формы энергии, легко превращаемой в другие, низшие формы. Конечно, это будет поначалу, наверное, дорогая энергия, и она не вытеснит — во всяком случае сразу — из нашей жизни тепловых и гидростанций, как не сделал это сам атом. Но у гравитационной энергии не должно быть тех недостатков, что так характерны для атомной.

Когда же здесь будут сделаны хотя бы первые шаги?

Артур Кларк в книге «Черты будущего» дал список будущих побед человечества над природой — с примерными датами. Он «назначил» там открытие гравитационных волн на 1980 год, а овладение гравитацией отнес на конец XXI столетия. Ныне покойный академик АН УССР А. 3. Петров, тогда председатель гравитационной комиссии АН СССР, заведующий отделом теории относительности и гравитации в Институте теоретической физики в Киеве, соглашался с первой частью этого прогноза и не поддержал вторую; вряд ли, по его мнению, физика так долго будет овладевать гравитацией. Стоит оглянуться на сравнительно недавнее прошлое взаимоотношений науки фундаментальной и прикладной, чтобы увидеть, подчеркивал советский ученый, как сокращается время между открытием научного принципа и моментом, когда созданный на его основе прибор входит в жизнь. И действительно, телефонная связь ждала своего часа пятьдесят лет. Радиопередатчик Попова отделен от опытов, в которых Герц обнаружил радиоволны, всего семью годами. Физики не захотят откладывать управление гравитацией на столетие. Ключ к нему Петров видел в открытии гравитационных волн: «Уверен, что сегодня никакие фантасты не смогут предсказать тех гигантских изменений, что придут в технику с экспериментальным обнаружением гравитационных волн».

Использование энергии тяготения в космосе прямо-таки напрашивается. Скажем, для того, чтобы добраться до планет, есть прямой смысл заставить космический корабль по дороге с какого-то момента падать на Солнце с выключенными двигателями. Естественно, поскольку корабль движется относительно Солнца, он будет падать на него точно так же, как «падает» на Солнце наша Земля, то есть попросту начнет двигаться вокруг Солнца по эллиптической траектории, станет планетой Солнечной системы, только искусственной. Требуется предварительно рассчитать его орбиту так, чтобы в какой-то точке она подошла максимально близко к планете назначения, в этой точке на корабле снова включат двигатели. Весь промежуточный участок пути будет пройден за счет гравитационной энергии Солнца.

Разработал эту схему еще в 1920-е годы немецкий ученый В. Гоман. Сегодня автоматические космические корабли к Венере и Марсу летят именно по таким «ленивым» траекториям. «Солнечный зонд», о котором говорилось выше, в середине восьмидесятых годов для того, чтобы поближе подобраться к Солнцу, использует гравитационное поле Юпитера.

Довольно нескоро человечество, видимо, сможет позволить себе тратить на кораблях горючее в таких размерах, чтобы они летели к планетам прямиком. Но сам принцип «утилизации» по пути бесплатной и ничего не весящей энергии тяготения будет, очень возможно, использован в межзвездных полетах. Вот описание такого способа дальних полетов из рассказа Михаила Пухова — не только фантаста, но и физика: «Вы когда-нибудь видели бильярд? Вот и прекрасно. Карамболем называют сложный удар, при котором биток, прежде чем коснуться мишени, задевает промежуточный шар. Или несколько промежуточных шаров. А мы пользуемся этим термином для полетов с гравитационным разгоном и поворотом… Первые такие рейсы выполнялись еще в XX веке, когда облет Венеры или Юпитера по пути к другим планетам позволял набрать лишнюю скорость и сберечь топливо. Потом этот маневр временно умер, чтобы возродиться при первых полетах к звездам. Правда, задача карамболя изменилась. Раньше он применялся в основном для увеличения скорости, теперь для изменения ее направления».

Смысл маневра в том, что чудовищное поле у нейтронной звезды или черной дыры иcкpивляeт пространство так, что в нем искривляется на определенный угол и путь летящего по инерции корабля. «Экономится уйма энергии и вещества».

Но это, так сказать, напрашивающееся транспортное использование гравитационной энергии, недаром принципиально ее начали разрабатывать так давно.

Трудно предсказать, как именно удастся черпать гравитационную энергию для общепроизводственных, что ли, целей. Однако проекты гравитационных генераторов время от времени появляются. Взгляды некоторых ученых уже сейчас обращаются к черным дырам. Разумеется, прежде всего к маленьким, «удобным в обращении», портативным.

Вот один из проектов добычи энергии из черной дыры. Минидыру надо доставить поближе к Земле и сделать ее спутником. Для этого космический корабль должен будет подойти к черной дыре достаточно близко, чтобы гравитационная связь между ними стала прочной, а затем двинуться к Земле, держа за собой на буксире тяготения будущий «энергетический спутник» Земли. После того, как черная дыра займет на околоземной орбите отведенное ей место, космический корабль отправится выполнять новое задание, а на расстоянии сотни метров от минидыры на ее орбите появится искусственный спутник-автомат, который будет обстреливать свою соседку маленькими шариками. Каждый из них при падении в чудовищном гравитационном поле звезды нагреется до нескольких десятков миллионов градусов. Это вызовет в шариках термоядерную реакцию. Большая часть их вещества в результате будет выброшена из черной дыры в виде газа с огромным электромагнитным зарядом. На борту космического автомата (того же, что бросает шарики, или другого) размещен генератор с обмоткой, в которой газ этот вызовет мощный электрический ток. Дальше энергия передается в виде потока микроволн на огромные антенны, установленные на Земле.

Идея, достойная фантастического рассказа! Однако проект разработан не более и не менее как Комиссией по атомной энергии Соединенных Штатов Америки. Энергетический кризис заставляет искать самых экзотических путей выхода из него.

Поиск минидыр, если они есть, станет (а вдруг?!) такой же важной отраслью земного хозяйства; как сегодня разведка нефти. Впрочем, по расчетам получается, что всего одна минидыра даст достаточно энергии, чтобы надолго обеспечить ею человечество. Но ведь мы выходим в космос, и потребность в энергии будет все расти и расти.

Ну, а как насчет создания в будущем антигравитационных систем, так называемых гравитационных двигателей и личных антигравитаторов? Уж очень соблазнительно помечтать вместе с Уэллсом, Артуром Кларком и другими фантастами о космических кораблях, обходящихся без дюз, о силовых полях, которые переносят по Земле потоки грузов, о способах, которые позволят человечеству экономить ту четверть вырабатываемой на Земле энергии, что приносится в жертву тяготению. Если даже и не сэкономить энергию (двигатель на то и двигатель, каков бы он ни был, чтобы ее потреблять), то во всяком случае сделать гораздо удобнее и космические полеты и перевозки.

Будущее — на него, наверное, можно положиться. Оно осуществляет то, о чем мечтает настоящее. До сих пор те пророки техники реже всего попадали впросак, которые делали оптимистические предсказания — при условии, что эти предсказания были достаточно общими. Мы восхищаемся Роджером Бэконом и Леонардо да Винчи за то, что те предвидели авиацию, и досадливо пропускаем строчки, в которых их летающие машины машут крыльями. Всякая точность пророку противопоказана — и не только в технике. Но автор этой книги не собирается выступать в роли предсказателя. Поэтому стоит поговорить о гипотетических путях подлинного покорения тяготения, заранее отдавая себе отчет в том, что наука почти наверняка выберет себе иные конкретные дороги.

Прежде всего общая теория относительности разрешает создать систему, в которой одно тело будет отталкиваться от другого примерно так, как две катушки с током, вращающиеся в разные стороны, отталкиваются друг от друга. К сожалению, до сих пор экспериментальная техника была бессильна хотя бы заметить это отталкивание — так ничтожен эффект даже в том случае, когда материал этих тел, будь то самая твердая сталь, почти разрушается под действием центробежной силы. Раскрутить два шара или два диска до такой степени, чтобы сила отталкивания победила и верхний из них взвился над планетой, теория гравитации позволяет. Теория прочности — нет.

Не исключено, что такие материалы когда-нибудь все-таки создадут, и антигравитация станет реальностью. Но кажется, что если антигравитационный двигатель будет создан, то не таким прямым путем. Наука, как хороший полководец, редко решает проблемы такого рода атакой «в лоб»; прямой путь тут самый трудный, надо искать обходные, бить по слабым местам. Предсказывать сейчас, где их найдут ученые, — вещь рискованная. Однако один из возможных — пусть фантастических пока — путей можно увидеть в гипотезе о возможности существования отрицательной массы.

<<< Назад
Вперед >>>

Генерация: 0.935. Запросов К БД/Cache: 0 / 3
Вверх Вниз