Книга: Глаз, мозг, зрение
Значение рецептивных полей с центром и периферией
<<< Назад Связи между биполярными и ганглиозными клетками |
Вперед >>> Заключение |
Значение рецептивных полей с центром и периферией
Зачем эволюции понадобилось создавать столь любопытные образования, как рецептивные поля с центральной и периферической зонами? Иными словами, какую пользу они приносят животному? Отвечать на столь глубокие вопросы всегда нелегко, но мы можем попытаться высказать ряд правдоподобных соображений. Сообщения, которые глаз посылает мозгу, могут быть очень мало связаны с абсолютной освещенностью сетчатки, так как ганглиозные клетки сетчатки плохо реагируют на изменения силы рассеянного света. О чем действительно сигнализирует клетка, так это о результате сравнения количества света, падающего на определенный участок сетчатки, с его средним количеством в ближайшем окружении.
Мы можем проиллюстрировать это сравнение следующим экспериментом. Найдем сначала клетку с on-центром и картируем ее рецептивное поле. Затем, равномерно осветив экран слабым постоянным фоновым светом, начнем включать и выключать пятнышко, точно заполняющее центр поля, начиная со столь слабого света, что его еще нельзя увидеть, и постепенно повышая интенсивность. При некоторой яркости мы начнем обнаруживать реакцию; отметим, что именно при этой яркости мы и сами начнем видеть это пятнышко. Измерив интенсивность фона и пятнышка фотометром, мы выясним, что пятнышко приблизительно на 2 % ярче фона. Теперь повторим всю процедуру, начиная с фонового света в пять раз более яркого. Будем постепенно повышать интенсивность локального стимула. В какой-то момент мы снова начнем обнаруживать реакции, и опять это произойдет при такой яркости, когда мы сами будем едва замечать световое пятнышко на новом фоне. Измерив стимулирующий свет, мы найдем, что он тоже в пять раз ярче предыдущего, т.е. пятнышко снова на 2 % ярче фона. Вывод таков, что как для нас, так и для клетки существенна относительная освещенность пятнышка и фона.
Неспособность клетки хорошо реагировать на что-либо кроме различий в локальной интенсивности может показаться странной, так как при рассматривании крупного равномерно освещенного пятна его внутренность представляется нам такой же яркой, как и его края. Ганглиозная клетка, если учесть ее физиологию, может передавать информацию только о границах пятна; внутренность его мы видим как однородную, поскольку ганглиозные клетки с полями, находящимися внутри пятна, не сообщают о локальных различиях в освещенности. Аргументация эта кажется достаточно убедительной, и все же мы испытываем некоторое сомнение: логика логикой, но ведь внутренность пятна видна все-таки абсолютно ясно! Мы вновь и вновь будем сталкиваться с этой проблемой в последующих главах, и нам придется признать, что нервная система часто работает по принципам, противоречащим нашей интуиции. Рассуждая рационально, однако, мы должны согласиться, что видеть большое пятно с помощью только тех клеток, поля которых лежат на его границах (не нуждаясь в участии остальных клеток с центрами, распределенными по всему пятну), — это более экономный способ: если вы инженер, то вы, вероятно, именно так сконструировали бы соответствующую машину. В таком случае и машина, я думаю, тоже «представляла бы себе» пятно освещенным равномерно.
В одном отношении слабые реакции нейрона или их отсутствие при воздействии диффузного света не должны вызывать удивления. Каждый, кто пытался фотографировать без экспонометра, знает, насколько плохо мы можем судить об абсолютной интенсивности света. Считайте, что нам везет, если мы можем устанавливать диафрагму своего фотоаппарата с ошибкой не более чем вдвое; да и это достигается не прямой оценкой «на глаз», а лишь в результате большого опыта, позволяющего, например, отметить, что в момент съемки на небе легкая облачность и что мы находимся на открытом пространстве в тени за час до захода солнца. Однако при пространственных сравнениях, когда нужно сказать, какая из двух соседних областей ярче или темнее, мы, как и ганглиозные клетки, судим очень точно. Как уже говорилось, мы способны производить такое сравнение при различии всего в 2 % — в точности так, как это могут делать наиболее чувствительные ганглиозные клетки в сетчатке обезьяны.
Наряду с эффективностью эта система обладает еще одним важным преимуществом. Большинство объектов мы видим благодаря отраженному свету таких источников, как солнце или электрическая лампочка. Несмотря на изменения освещенности, создаваемой этими источниками, наша зрительная система сохраняет удивительную способность к неизменному восприятию объектов. Ганглиозная клетка сетчатки работает именно так, что это становится возможным. Рассмотрим следующий пример: газета выглядит примерно одинаково — белая бумага, черные буквы, — читаем ли мы ее в полумраке комнаты или на пляже в солнечный день. Предположим, что в обоих случаях мы измерим входящий в наши глаза свет от белой бумаги и от одной из черных букв заголовка. Вот какие цифры я получил, когда перешел из закрытого помещения на солнце во внутренний дворик Гарвардской медицинской школы:
(пусто) // На открытом воздухе // В комнате
Белая бумага // 120 // 6.0
Черная бумага // 12 // 0,6
Сами цифры не вызывают сомнений. Снаружи свет в 20 раз ярче, чем в комнате, а черные буквы отражают приблизительно десятую долю света, отражаемого белой бумагой. Но эти цифры, когда вы видите их впервые, тем не менее поражают, так как они показывают, что черная буква на открытом воздухе посылает в наши глаза вдвое больше света, чем белая бумага при комнатном освещении. Отсюда ясно, что восприятие черного и белого не определяется самим по себе количеством отражаемого объектом света. Существенно то, каково это количество в сравнении с окружающим фоном.
Экран выключенного черно-белого телевизора в нормально освещенной комнате выглядит белым или серовато-белым. Инженеры создали электронные механизмы, которые могут сделать экран ярче, но не способны затемнить его, и независимо от того, как он выглядит в выключенном виде, никакая его часть никак не может послать после включения меньше света. Мы, однако, хорошо знаем, что телевизор может дать нам ощущение насыщенного черного цвета. Самый темный участок изображения посылает в наши глаза по меньшей мере столько же света, что и при выключенном телевизоре. Отсюда следует, что «черное» и «белое» — не просто физические понятия: это биологические термины, они отражают результат вычислений, производимых нашей сетчаткой и мозгом при обработке воспринимаемой картины.
Как мы увидим в главе 8, все соображения, которые я высказал здесь о черном и белом, применимы и к цвету. Видимый цвет объекта определяется не только приходящим от него светом, но также — в столь же значительной степени, как в случае черного и белого, — и светом, приходящим от всего остального. В результате то, что мы видим, становится независимым не только от интенсивности света, но и от его спектрального состава. И опять-таки это способствует постоянству восприятия видимой картины несмотря на заметные различия в яркости и спектральном составе падающего на нее света.
<<< Назад Связи между биполярными и ганглиозными клетками |
Вперед >>> Заключение |
- Глазное яблоко
- Сетчатка
- Рецептивные поля ганглиозных клеток сетчатки: выход глаза
- Понятие рецептивного поля
- Перекрывание рецептивных полей
- Размеры рецептивных полей
- Фоторецепторы
- Биполярные и горизонтальные клетки
- Амакриновые клетки
- Связи между биполярными и ганглиозными клетками
- Значение рецептивных полей с центром и периферией
- Заключение
- Использование рыбами электрических полей
- Связи между биполярными и ганглиозными клетками
- Глава 2. Проблемное поле, универсальные принципы и моральные ценности биоэтики
- Глава 10 Эта таинственная энтропия Более глубокое значение энтропии – одно из замечательнейших достижений в истории физи...
- Практическое значение смещенных реакций
- Интерферон и его предназначение
- Назначение воздушного океана
- Глава I МЕСТО ЗЕЛЕНЫХ РАСТЕНИЙ В КОСМОСЕ И ЗНАЧЕНИЕ ИХ ДЛЯ ЧЕЛОВЕКА
- Перекрывание рецептивных полей
- Разброс и смещение рецептивных полей
- Практическое значение неконтролируемого стресса
- Глава 1.1. Значение техники искусственного выкармливания новорожденных хищных млекопитающих для формирования поведения в...