Книга: Космос

Расширяющаяся Вселенная

<<< Назад
Вперед >>>

Расширяющаяся Вселенная

Звёздное небо над головой долгое время было для человека символом вечности и неизменности. Лишь в Новое время люди осознали, что «неподвижные» звёзды на самом деле движутся, причём с огромными скоростями. В XX в. человечество свыклось с ещё более странным фактом: расстояния между звёздными системами — галактиками, не связанными друг с другом силами тяготения, постоянно увеличиваются. И дело здесь не в природе галактик: сама Вселенная непрерывно расширяется! Естествознанию пришлось расстаться с одним из своих основополагающих принципов, согласно которому все вещи меняются в этом мире, но мир в целом всегда одинаков. Это можно считать важнейшим научным событием XX в.

В 1929 г. американский астроном Эдвин Хаббл обнаружил расширение наблюдаемого мира галактик. Оказалось, что галактики удаляются от нашей Галактики со скоростями в сотни километров в секунду. Более того, из наблюдений следовало, что чем дальше находится объект, тем с большей скоростью он от нас удаляется. Закон, по которому скорость удаления пропорциональна расстоянию, получил название закона Хаббла.

Однако это не означает, что наша Галактика является центром, от которого и идёт расширение. Наблюдатель в любой точке Вселенной должен увидеть ту же самую картину. Этот факт может быть проиллюстрирован следующим образом. Если на поверхности воздушного шарика нарисовать галактики и начать надувать его, то расстояния между изображениями будут возрастать, причём тем быстрее, чем дальше они расположены друг от друга. Разница лишь в том, что нарисованные на шарике галактики и сами увеличиваются в размерах, реальные же звёздные системы повсюду во Вселенной могут сохранять свои размеры, так как составляющие их звёзды и газ связаны между собой силами гравитации.


Компьютерная модель, показывающая структуру Вселенной. Жёлтым обозначена материя, чёрным — пустота, фиолетовым — наблюдаемая лишь косвенно загадочная тёмная материя. Каждая жёлтая точка — одна галактика, пятна покрупнее — скопления и сверхскопления галактик


Скопление галактик 

Но если Вселенная расширяется, то сегодня мы видим её не такой, какой она была в прошлом. Миллиарды лет назад галактики располагались значительно ближе друг к другу. Ещё раньше отдельных галактик просто не могло существовать, а совсем близко к началу расширения даже мелкие небесные тела не вместились бы в том небольшом объеме, который тогда занимала вся наблюдаемая сейчас часть безграничной Вселенной. Сама эпоха, когда расширение Вселенной стартовало (момент этого «старта» часто называют Большим взрывом), удалена от нас примерно на 13–14 млрд. лет.

 * * *

Гравитационные линзы

Гравитационными линзами называют объекты, которые своим полем тяготения заметно искривляют световые лучи, проходящие вблизи или сквозь них. Из-за этого изображение удалённого источника (звезды, галактики, квазара), свет которого проходит вблизи такого объекта, искажается или даже представляется в виде нескольких отдельных изображений.

В принципе любое тело способно «собирать» своим гравитационным полем параллельные лучи света в некотором фокусе подобно оптическим линзам (хотя, в отличие от обычной линзы, расстояние до такого фокуса будет очень большим и к тому же различным для лучей, проходящих на разном расстоянии от «линзы»). Но только астрономические объекты огромной массы типа звёзд, галактик или их скоплений могут создавать заметный эффект.

Дело в том, что порция светя — фотон формально может рассматриваться как частица, обладающая массой. Поэтому вблизи притягивающего тела траектория фотона должна отклоняться от прямой линии (даже в рамках ньютоновской физики). Этот эффект впервые был обнаружен английским астрофизиком Артуром Эддингтоном в 1919 г. по наблюдениям полного солнечного затмения: звёзды, которые были заметны вблизи края солнечного диска, оказались дальше от него, чем должны были быть, если бы свет от них распространялся по прямой. Угол, на который фотоны отклонялись в поле тяготения Солнца, в точности соответствовал предсказаниям теории относительности Эйнштейна — вдвое больше, чем по ньютоновской теории.

Сейчас известно множество надёжно установленных гравитационных линз. В основном наблюдаются квазары (особо мощные и сильно удалённые от нас активные ядра галактик), изображения которых «размножены» попадающими на луч зрения близкими галактиками. Почему квазары? Это одни из самых далёких и ярких объектов во Вселенной, а значит, наблюдать явление гравитационной линзы для них намного проще. Ведь чем дальше от нас находится объект, тем больше вероятность того, что на луче зрения попадётся какая-нибудь галактика.

В конце 1980-х гг. стали наблюдаться гравитационные линзы на скоплениях галактик. При этом было обнаружено, что изображения слабых голубых галактик, находящихся за линзирующим скоплением, имеют вытянутую дугообразную форму.

Если сквозь скопление видно много далёких галактик, то удаётся обнаружить эффект слабого гравитационного линзирования, который проявляется лишь в небольшом искажении формы галактик (изображения немного вытягиваются, и это можно обнаружить, измеряя степень и направление их вытянутости и усредняя по большому числу объектов). По этому эффекту удаётся измерить распределение плотности вещества внутри скопления.


Наблюдаемая структура Вселенной определяется тем, что астрономические тела обладают тенденцией группироваться в огромные системы. Звёзды могут образовывать пары, входить в состав звёздных скоплений или ассоциаций. Крупнейшими объединениями звёзд являются галактики. Но и они редко наблюдаются как одиночные. Более 90% ярких галактик входят либо в небольшие группы, содержащие лишь несколько крупных членов (такова, например, Местная группа галактик), либо в скопления, в которых их насчитываются многие тысячи.

Галактики и их группы распределены в пространстве не равномерно, а образуют скопления, обычно неправильной формы. Скопления галактик, по-видимому, самые крупные устойчивые системы во Вселенной, их гравитационное поле не позволяет галактикам разлететься. Существуют и более протяжённые образования: цепочки из скоплений или гигантские сравнительно плоские поля, усеянные галактиками и скоплениями (так называемые стенки). Но гравитация не удерживает эти системы, и они расширяются примерно с тем же темпом, что и вся Вселенная в целом.

Области повышенной концентрации галактик и их систем чередуются в пространстве с обширными пустотами размерами в сотни миллионов световых лет, которые почти не содержат галактик, образуя в пространстве трёхмерную «сеть».

* * * 

Новейшие проекты — «Радиоастрон» и «Миллиметрон»

Два проекта исследования космоса осуществляются в наши дни при ведущем участии российских ученых и крупнейших космических предприятий России. Один из них называется «Радиоастрон». Этот международный космический проект создан для проведения фундаментальных астрофизических исследований в радиодиапазоне электромагнитного спектра с помощью космического радиотелескопа, смонтированного на российском космическом аппарате «Спектр-Р». Координатор проекта — Астрокосмический центр ФИАН под руководством академика Николая Семёновича Кардашева. Основу проекта составляет наземно-космический радиоинтерферометр со сверхдлинной базой, состоящий из сети наземных радиотелескопов и космического радиотелескопа, установленного на российском космическом аппарате «Спектр-Р». Создатель аппарата «Спектр-Р» — НПО им. С.А.Лавочкина.

Запуск аппарата произведён 18 июля 2011 года с космодрома Байконур. Космический радиотелескоп с приёмной параболической антенной диаметром 10 метров выведен на высокоапогейную орбиту спутника Земли высотой до 350 тыс. км в составе космического аппарата «Спектр-Р». Он является крупнейшим в мире космическим телескопом, что было отмечено в книге рекордов Гиннеса.

Главная научная цель миссии — исследование астрономических объектов различных типов с беспрецедентным разрешением до миллионных долей угловой секунды. Разрешение, достигнутое с помощью проекта «Радиоастрон», позволяет изучать:

— релятивистские струи, а также непосредственные окрестности сверхмассивных чёрных дыр в активных галактиках,

— строение и динамику областей звездообразования в нашей Галактике по их лазерному излучению,

— нейтронные звёзды и чёрные дыры в нашей Галактике,

— структуру и распределение межзвёздной и межпланетной плазмы по расщеплению и флуктуациям изображений пульсаров,

— эффекты общей теории относительности в гравитационном поле Земли.


Николай Семёнович Кардашев — известный российский астроном и астрофизик, академик РАН; директор Астрокосмического центра Физического института академии наук России; руководитель проектов «Радиоастрон» и «Миллиметрон»


Российский космический аппарат «Спектр-Р» или «Радиоастрон» — огромный орбитальный радиотелескоп. Диаметр его антенны — 10 м. «Радиоастрон» зарегистрирован в книге рекордов Гиннеса как крупнейший в мире среди космических радиотелескопов 

В связи с программой предполагается широкий спектр исследований фундаментального характера. «Радиоастрон» может быть также использован для высокоточного отслеживания перемещения в пространстве наиболее далеких потенциально опасных объектов (астероидов и комет). Для этого желательно разместить на этих объектах радиомаяки.

«Миллиметрон» (Спектр-М) — космическая обсерватория миллиметрового и инфракрасного диапазонов длин волн с криогенным телескопом диаметром 10 м. Запуск планируется после 2019 года. Разработчик проекта — Астрокосмический центр ФИАН.

«Миллиметрон» предназначен для проведения высокоточных исследований космических объектов в дальнем инфракрасном, субмиллиметровом и миллиметровом диапазонах спектра электромагнитного излучения. Также как и «Радиоастрон», «Миллиметрон» сможет работать как в режиме одиночного телескопа, так и в составе интерферометра с базами «Земля-Космос» (с наземными телескопами).

По мнению ведущего автора проекта — академика Н.С. Кардашева, именно возможность приема информации в названном интервале длин волн позволит использовать обсерваторию «Миллиметрон» и в интересах космической защиты Земли.

Таким образом, эти проекты в ближайшем будущем смогут внести вклад и в разрешение фундаментальных проблем астрономии и космологии, и в космическую защиту нашей планеты.


Перспективная космическая обсерватория «Миллиметрон» или «Спектр-М», создаваемая в настоящее время (2010–2019 гг.) в НПО им. С.А.Лавочкина


Находясь в космосе уже несколько лет, «Радиоастрон» собрал большой объем данных, которые сейчас активно изучаются астрономами и астрофизиками России и всего мира. На основе этих данных уже выпускаются и ещё будут выходить в свет многочисленные публикации в мировых научных изданиях. Этот космический аппарат примечателен ещё и тем, что к моменту старта был первым астрофизическим инструментом, выведенным Россией в космос за долгое время, возобновив лидерство нашей страны в этой области

<<< Назад
Вперед >>>

Генерация: 6.568. Запросов К БД/Cache: 2 / 0
Вверх Вниз