Книга: Империя звезд, или Белые карлики и черные дыры

Глава 3 Гиганты астрофизики

<<< Назад
Вперед >>>

Глава 3

Гиганты астрофизики

Артур Стэнли Эддингтон написал однажды о себе: «Личность человека нельзя охарактеризовать с помощью символов, как нельзя извлечь квадратный корень из сонета». Внешний вид Эддингтона мало что говорил о нем. Жесткая поза, непроницаемый пристальный взгляд, высокий лоб, длинный нос и неулыбчивые губы — все это заставляло вспомнить его кембриджского предшественника, сэра Исаака Ньютона. Для Чандры Эддингтон был типичным продуктом эдвардианской Англии, где каждый знал свое место в обществе и был уверен в своих привилегиях.

Эддингтон был действительно выдающимся ученым, и, беседуя с ним, каждый невольно это ощущал. Британцы, особенно в прежние времена, могли быть очень милыми и добрыми, но в то же время тонко давали понять окружающим, что они люди другого уровня — это было естественно для них, и в этом не было снобизма. Эддингтон был именно таким человеком.

Мы мало что знаем о частной жизни Эддингтона. Перед смертью, осенью 1944 года он начал уничтожать свои личные письма. Старшая сестра Эддингтона Уинифред, с которой он прожил большую часть жизни, ликвидировала все оставшееся — то, что он не успел. Эддингтон завещал Королевскому астрономическому обществу свой кабинет, полный документов. Однако почтенный Полковник Стрэттон изучил их и выбросил, сказав, что они имеют «чисто биографический интерес». Единственная биография Эддингтона, написанная его бывшей студенткой Элис Виберт Дуглас, больше походит на сухой перечень событий.

Эддингтон был противоречивой личностью: по словам студентов, он был болезненно застенчив, но так высокомерен, что с ним было очень трудно разговаривать. Он вел себя как человек, к которому нужно относиться с почтением. Эддингтон был ужасающе скучным лектором в худшем кембриджском стиле. Тем не менее он мог быть душой компании. В записной книжке, полной случайных мыслей и воспоминаний, Чандра перечислил двадцать пять историй, которые Эддингтон рассказывал в столовой во время обеда.

Коллеги Эддингтона вспоминают его оригинальное чувство юмора. Чандра писал, как однажды они пытались назвать самые выдающиеся изобретения в истории человечества. «Эддингтон откинулся на спинку кресла, выпустил клубы дыма из своей фирменной трубки и сказал, что застежка-молния была самым гениальным изобретением, а затем добавил, что использование таких застежек в женских платьях может привести к забавным ситуациям. Например, на какой-нибудь вечеринке молния могла бы случайно расстегнуться, и платье упало бы на землю, к изрядному смущению его обладательницы. Эддингтон развеселился, а благовоспитанные скромницы по соседству с ним даже не улыбнулись».

Эддингтон был чрезвычайно образованным человеком. Его книги изобиловали цитатами на французском, немецком и итальянском языках. А еще он был замечательным шахматистом и легко разгадывал кроссворды в газете «Times», практически не отрывая руки от газетной полосы. Несмотря на довольно унылый стиль своих лекций, он прекрасно выступал на общеполитические темы.

Американский физик Уильямс, с которым Эддингтон работал несколько месяцев в 1924 году в Беркли (Калифорния), писал: «Меня очень раздражала эта его типичная британская необщительность». Однако когда выяснилось, что оба ученых увлекаются гольфом, они дважды в неделю стали в Клубе Клермонта играть на пару в «очень плохой гольф». Уильямс также вспоминает, что Эддингтон был поклонником «Алисы в Стране чудес» и сочинял остроумные стихи.

Выдающийся американский астроном Харлоу Шепли рассказывал, что Эддингтон, приехавший на трехсотлетие Гарвардского университета в 1936 году, «интересовался только двумя вещами — галактиками и „Red Sox“», легендарной бостонской бейсбольной командой. Шепли рассказал Чандре, что он попросил ведущих американских астрономов расставить ученых по ценности их вклада в науку. В результате «Эддингтон оказался первым в каждом списке»!

Считалось бесспорным, что создание астрофизики — это заслуга практически одного Эддингтона. Ученые испытывали перед ним благоговейный трепет: его огромный авторитет был связан не столько с административным положением, сколько с кристальной ясностью статей и прочными научными связями с самыми именитыми коллегами всего мира. Милн писал, что он просто околдовывал мощью своего интеллекта. «Эддингтон обладал типичным для гения даром делать правильные выводы из сомнительных аргументов», — писал студент Милна Томас Коулинг после многочисленных выступлений Эддингтона в Королевском астрономическом обществе. Сомневаться в правильности любой из его теорий было весьма рискованно, и это вызывало отпор не только у самого Эддингтона, но и у свято веривших ему коллег. К ним относился, например, влиятельный американский астрофизик Генри Норрис Рассел, всегда поддерживавший даже самые экстравагантные теории Эддингтона.

Эддингтон родился 20 декабря 1882 года в живописном городе Кендал, расположенном посреди холмов Озерного края, в небогатой семье квакеров, заметно отличавшейся от богатой семьи Чандры. Отец Эддингтона работал директором школы квакеров: он скончался во время эпидемии брюшного тифа, когда Эддингтону было всего два года. Еще в детстве будущий ученый, увлекшись астрономией, рассматривал ночное небо через трехдюймовый телескоп своих соседей. Интересовала его и математика больших чисел — Эддингтон обладал великолепной памятью. Вернувшись после недолгого отсутствия в доме, его мать как-то спросила, что мальчик делал без нее. «Я подсчитывал количество слов в Библии», — ответил не по годам развитый ребенок. А по ночам он считал звезды на небе.

Для обучения Эддингтону требовалась хотя бы скромная стипендия. Он посещал небольшую школу в Уэстон-Супер-Маре, но, экономя деньги, никогда не пользовался полным пансионом. Он обожал английскую литературу и любил вспоминать, что когда-то выиграл конкурс на лучшую стихотворную строку в стиле «бармаглот» (использование нелепых конструкций с соблюдением грамматических правил). Благодаря своим блестящим способностям юный Эддингтон получил стипендию Оуэнс-колледжа (который вскоре стал Манчестерским университетом), хотя ему еще не исполнилось положенных шестнадцати лет. Другие стипендии помогли Эддингтону достичь больших успехов в изучении физики, математики, механики, английской истории, латыни, и он получил высшее образование уже в девятнадцатилетнем возрасте.

Одну из стипендий ему выделили для изучения математики в кембриджском Тринити-колледже. В конце второго курса Эддингтон лучше всех сдал сложнейший экзамен по математике — трайпос, после чего ему была гарантирована прекрасная научная карьера. Никому ранее не удавалось так быстро добиться успеха.

К 1906 году Эддингтон уже знал, что главным в его научной жизни будет астрономия, увлекшая его еще в детстве. В том же году британское Королевское астрономическое общество предложило ему должность главного ассистента в Гринвичской королевской обсерватории. Именно здесь Эддингтон понял, как чрезвычайно мало науке известно о звездах. Астрономы и астрофизики предлагали множество путаных гипотез, но не имели ясного представления о перемещении в пространстве, возникновении и смерти небесных светил. Первые работы Эддингтона были посвящены движению звезд, а в 1907 году он по конкурсу занял место научного сотрудника Тринити-колледжа. Его достижения в астрофизике были столь велики, что, когда умер профессор астрономии и экспериментальной философии Джордж Дарвин (один из сыновей Чарльза Дарвина), Эддингтону было предложено занять освободившееся кресло. А в 1914 году Эддингтон стал директором Кембриджской обсерватории. Ему предоставили комфортабельный особняк, в который вскоре переехали его сестра и мать. В том же году началась Первая мировая война.

Обитатели Оксфорда и Кембриджа представляли собой чуть ли не монашеский орден, рыцари которого посвятили себя исключительно научной работе. Коллегами Эддингтона по Тринити-колледжу были знаменитые математики Годфри Харди и Джон Литлвуд, прославившиеся своими превосходными работами по теории чисел. В зрелом возрасте Литвуда часто замечали в компании хорошенькой дамы, которая была намного моложе его и которую Литлвуд представлял как свою племянницу. Хорошо воспитанные коллеги удивленно поднимали брови, но, по кембриджской традиции, вопросов не задавали. И лишь достигнув восьмидесятилетия Литлвуд признался, что эта женщина — его дочь. Оказывается, у него была длительная и тайная связь с замужней дамой. «На следующий день он выглядел подавленным, но все сделали вид, что ничего не заметили!» — и это полностью соответствовало кембриджским традициям.

В те времена преподаватели колледжа проводили большую часть времени в мужских компаниях. Викторианский идеал романтической дружбы в пределах исключительно мужского сообщества был нормальным явлением. К этому относились с уважением и тактично не обсуждали. Лишь через несколько десятилетий было признано, что мужчины не всегда лишь только дружили.

Образцовым представителем университетского общества был Годфри Харолд Харди. Высокие скулы, тонкий нос, холодный взгляд, строгое поведение и моложавый облик делали его, по мнению коллег, образцом мужской красоты. Он был членом элитного кембриджского тайного общества, известного как Клуб апостолов — в 1820 году это общество основали двенадцать человек. Членами общества были лорд Альфред Теннисон, Бертран Рассел и Джеймс Клерк Максвелл — самые блестящие умы Кембриджа. И в этом тайном обществе царила настолько гомосексуальная атмосфера, что один из его членов признавался: «Даже бабники притворялись гомосексуалистами, чтобы быть достойными нашего клуба». В конце XIX века его члены составили ядро литературного кружка Блумсбери, в обществе состоял экономист Джон Мэйнард Кейнс, а в 1930-х годах оно было печально известно как гнездо шпионов, и работавший на СССР разведчик Гай Берджесс завербовал многих членов общества. Во времена запрета гомосексуализма математик Литлвуд называл Харди «непрактикующим гомосексуалистом». Отец компьютеров Алан Тьюринг высказывался более прямо и называл Харди «еще одним английским интеллектуальным гомосексуальным атеистом».

А что в этом смысле можно сказать об Эддингтоне? Женщины находили его очаровательным, и, в отличие от большинства коллег по Кембриджу, профессор Эддингтон был с дамами весьма учтив. Одна из его первых студенток, юная Сесилия Пэйн, вспоминала, как ей грубил выдающийся физик Эрнест Резерфорд. Часто он начинал свои лекции, на которых Сесилия была единственной женщиной в аудитории, таким образом: смотря ей прямо в глаза, он произносил «леди» … затем следовала длинная пауза… «и джентльмены». Сесилия дружила с дочерью Резерфорда, которая процитировала Сесилии высокомерную фразу отца: «Ты ей неинтересна, дорогая. Она интересуется только мной». Пэйн была так этим оскорблена, что бросила физику и переключилась на астрономию, интерес к которой возник на лекциях Эддингтона. Он дружески поддержал ее и предложил заняться исследованием структуры звезд.

Много лет спустя она сказала Чандре: «Мой интерес к астрономии начался с лекций Эддингтона, на которых он говорил о результатах проверки общей теории относительности. Тогда я собиралась сдавать экзамен на степень бакалавра по естествознанию, но благодаря Эддингтону решила сдавать математику, так как после экзамена могла стать его студенткой. <…> Я не собиралась говорить Вам этого, но я и вправду влюбилась в него».

Хотя женщины находили Эддингтона привлекательным, его биограф писательница Элис Виберт Дуглас отмечала, что Эддингтон никогда не собирался жениться. Кроме матери и сестры, «женщины для него были просто его знакомыми, и лишь некоторые женщины-астрономы значили для него больше, чем просто коллеги». Биограф отмечает, что лишь с одним человеком у Эддингтона «была длительная дружба, и с ним он мог отбросить всю неуверенность, сформировавшую почти непроницаемый барьер между ним и другими людьми». Этим человеком был Чарльз Тримбл, которого Дуглас называет постоянным компаньоном Эддингтона и «самым близким другом».

Знакомые Тримбла из Тринити-колледжа вспоминали, что Эддингтон оказал на него очень большое влияние. Они оба вышли из рабочих семей и встретилось в Тринити, где такие студенты были редки; возможно, это и послужило толчком к обоюдной симпатии. Тримбл родился в 1883 году в городе Бат. Он учился в частной школе при Христовом госпитале, которая давала превосходное образование мальчикам из бедных семей. В Тринити-колледже он получил высшее образование и был четвертым в своей группе (Эддингтон был первым). Эддингтон занялся научными исследованиями, а Тримбл поступил на государственную службу. В 1910 году он преподавал математику в своей школе при Христовом госпитале, и его бывшие ученики вспоминали, что Тримбл пытался привить им любовь к литературе не меньше, чем к математике. Эддингтон часто катался на велосипеде с Тримблом, и тогда он забывал свою квакерскую рассудительность, баловался алкоголем, курил, а в городе друзья ходили в театр и кино. Возможно, они были больше чем просто друзьями. Но в те дни все хорошо помнили дело Оскара Уайльда 1895 года и опасались даже подозрения в гомосексуализме. Если Эддингтон действительно был гомосексуалистом, то он вел себя чрезвычайно осторожно.

Эддингтон работал в одиночестве, без сотрудников. Его унылые лекции студенты посещать не стремились, но на элегантных и информативных публичных выступлениях они видели настоящего Эддингтона.

Все удивлялись, что в кабинете великого астрофизика научные журналы и книги валялись повсюду — на полу, на диване, на столе. Коллеги вспоминали, как они приходили к нему в кабинет точно в назначенное время, а Эддингтон удивленно и вежливо выслушивал их, поедая яблоко за яблоком и явно пытаясь вспомнить, кто стоит перед ним и зачем. Однажды норвежский астрофизик Свен Росселанд посетил его в указанное время. Но как раз незадолго перед этим Эддингтон решил, что лишь с помощью математики можно доказать существование элементарных частиц. Росселанд долго и безрезультатно стучал в дверь. Минут через пять Эддингтон все-таки открыл замок и воскликнул: «О, это вы! Войдите. Я только что обнаружил нейтрон».

Когда Эддингтон в 1906 году начал работать в Гринвичской королевской обсерватории, астрофизика все еще находилась в младенческом возрасте. Ученые считали, что такие звезды, как наше Солнце, представляют собой газообразные сферы из отдельных атомов[6]. О структуре самих атомов было известно очень мало до тех пор, пока датский физик Нильс Бор в 1913 году не предложил теорию строения атома. По этой теории атом представляет собой миниатюрную солнечную систему с положительно заряженным ядром, вокруг которого по определенным орбитам вращались отрицательно заряженные электроны. В результате атом оказывался электрически нейтральным, и полный заряд всей этой системы равнялся нулю. У водорода был самый простой и самый легкий атом, состоящий из ядра и одного электрона[7], а у следующего легкого элемента, гелия, было два электрона.

Предполагалось, что внутри звезд температура невообразимо высока и доходит до миллионов градусов Кельвина. Огромная тепловая энергия приводит к возбуждению электронов, вращающихся вокруг ядер, связи между электронами и ядром разрываются, образуются свободные электроны, и поэтому звезда представляет собой совокупность быстро перемещающихся электронов и медленно движущихся ядер. Астрофизики 1920-х годов при изучении структуры звезд основное внимание уделяли электронам. В те времена лишь немногие разбирались в ядерной физике, и только Эддингтон начал размышлять об источнике энергии для излучения звезд.

Астрофизики предположили, что звезды являются «идеальными газами»[8]. Термин «идеальный газ» появился в девятнадцатом столетии после установления простого соотношения между давлением, объемом и температурой газа с такой же малой плотностью, как воздух. Независимо от состава газа при постоянной температуре увеличение давления приводит к уменьшению объема газа. При постоянном давлении увеличение температуры приводит к увеличению объема газа; другими словами, при нагревании газ расширяется. Математическое соотношение между давлением, объемом и температурой газа и есть уравнение состояния идеального газа[9].

Физики измеряют температуру в градусах Кельвина, которые были названы так в честь британского ученого XIX века Уильяма Томсона — лорда Кельвина. Эти градусы пересчитываются в градусы Цельсия путем вычитания из них числа 273. Однако при огромных температурах звезд эта поправка несущественна, и можно использовать любую шкалу. Далее в книге температура будет указана в градусах Кельвина.

Эддингтон неоднократно встречался с американским астрофизиком Генри Норрисом Расселом. В 30 лет Рассел уже был профессором Принстонского университета. Как «старый принстонианец», он носил высокие ботинки со шнуровкой, крахмальные воротнички и дорогие костюмы. Во время краткого пребывания в Кембридже Рассел так проникся местной атмосферой, что даже усвоил британский акцент. Будучи ханжой, с неважным чувством юмора, он терпеть не мог, когда его называли крупным специалистом и всемирным авторитетом по Эросу — дело было в том, что предметом его кандидатской диссертации был астероид под названием Эрос. Рассел обладал огромным авторитетом в американском научном сообществе, и начинающие астрофизики побаивались его. Коллеги вспоминали о нем как об эгоистичном, властном и самоуверенном человеке. При этом Рассел всю жизнь завидовал Эддингтону и своему главному сопернику, астрофизику Джеймсу Джинсу, так как Джинс в Принстоне занимал более высокую должность с большей зарплатой. Впрочем, несмотря на свои личные недостатки и эксцентричность, он был превосходным астрофизиком, а его дипломники работали чуть ли не во всех обсерваториях мира.

Рассел пытался решить фундаментальную проблему — как протекает жизненный цикл звезд, как они рождаются, как эволюционируют и как умирают. В одной из первых работ Эддингтон развивал идею Рассела, касающуюся переменных звезд в созвездии Цефея. Блеск цефеид колеблется от максимума до минимума с периодом от нескольких часов до нескольких дней. К 1908 году было найдено более 1700 таких звезд и установлены определенные закономерности колебаний блеска звезд в созвездии Цефея[10]. Эддингтон вывел соотношение между периодом колебания звезд и их плотностью, причем результаты его расчета с неплохой точностью соответствовали астрономическим наблюдениям[11].

И вот Эддингтон решил выяснить, как звезды становятся цефеидами и что происходит с ними, когда, исчерпав свою энергию, они прекращают светиться и пульсировать. Первую подсказку он получил на лекции Рассела в Королевском астрономическом обществе в 1913 году, когда Эддингтон стал профессором на кафедре, возглавляемой Филиппом Плумианом. Доклад Рассела был последним по расписанию, все уже почти засыпали, и лишь Эддингтон внимательно слушал докладчика.

В XIX веке ученые обнаружили, что Вселенную пронизывают электромагнитные волны. Человеческий глаз способен различать лишь крошечный диапазон электромагнитного спектра, между ультрафиолетовым и инфракрасным излучением. Но на телескопах, установленных на орбитальных спутниках вне земной атмосферы работают датчики, чувствительные к невидимой глазу части спектра. С помощью этих датчиков можно изучать интереснейшие процессы во Вселенной, сопровождающиеся излучением в гамма- и рентгеновском диапазоне.

Каждый атом звезды испускает волны определенной частоты, точно так же, как камертон, имеющий заданную частоту звука. Излучение звезды представляет собой набор частот излучения огромного количества атомов самых различных элементов. Если одновременно ударить по миллиону камертонов, то можно услышать лишь шум, не различая в нем частоты отдельных камертонов. Аналогично излучение звезд представляет собой набор огромного количества различных длин волн электромагнитного спектра, который и изучают астрофизики с помощью различных спектроскопов, соединенных с окулярами телескопов. Попадающее в спектроскоп излучение звезды разлагается на набор частот, астрофизики фиксируют этот спектр на фотопластинке, и каждая частота проявляется как отдельная спектральная линия, подобно отпечаткам пальцев. Каждому химическому элементу соответствуют собственные специфические спектральные линии.

В конце XIX века астрономы Гарвардской обсерватории наняли низкооплачиваемых работниц для проведения классификации спектров излучения 500 тысяч звезд. По температурам на поверхности звезды были разделены на несколько классов, обозначенных как О, В, A, F, G, К, М, в порядке снижения температуры. Если О-звезды имеют поверхностные температуры в диапазоне от 28 000 до 50 000 К, то М-звезды — в диапазоне 2400–3480 К. Эти температуры были измерены с помощью спектров излучения звезд[12].

Блестящая идея Рассела состояла в построении графика зависимости блеска звезд от их температуры. Точно такой же график был построен датским астрономом и фотохимиком Эйнаром Герцшпрунгом независимо от Рассела[13], вот почему этот график получил название диаграмма Герцшпрунга-Рассела (HR-диаграмма). Именно эта диаграмма привлекла особое внимание Эддингтона во время доклада Рассела в 1913 году.

Рассел тогда представил диаграмму для 300 звезд, расстояния от которых до Земли были известны с высокой точностью. Он был чрезвычайно удивлен, что звезды на графике расположились вовсе не беспорядочно. Большинство звезд попало на полосу, идущую по диагонали от горячих и ярких звезд О-типа в левом верхнем углу диаграммы до холодных и тусклых звезд М-типа в правом нижнем углу графика. Эти звезды имели такой же геометрический размер, как и наше Солнце. Рассел назвал эту диагональную полосу «главной последовательностью». Другой класс звезд — больших по размеру и приблизительно одной яркости — оказался на горизонтали, отходящей от главной последовательности. По предложению Герцшпрунга Рассел назвал звезды на главной последовательности «карликами», а на горизонтальной полосе — «гигантами». Таким образом, звезды были разделены на два класса — гиганты (яркие звезды, в десятки и сотни раз больше Солнца) и карлики (равные по размеру Солнцу, с меньшей яркостью).

Позже Рассел говорил, что изобрел диаграмму, «потому что она давала возможность классифицировать звезды таким образом, чтобы они разместились на листе бумаги стандартного размера». Однако эта диаграмма оказалась гораздо большим, чем просто компактный способ представления информации. Уже вскоре стало ясно, что изучение строения звезд, их жизни и смерти напрямую связано с их положением на HR-диаграмме. Эддингтон был одним из первых астрофизиков, который осознал важность этой диаграммы и попытался интерпретировать заключенную в ней информацию о звездах. В результате ему удалось определить химический состав звезд и источники излучаемого ими света.

Одна из звезд оказалась особенно загадочной, так как полностью выпадала из упорядоченной схемы Рассела. Этой звездой была 2 Эридана В, тусклый компаньон 2 Эридана А[14]. Эти звезды, вращающиеся друг вокруг друга в бесконечном танце, известны как двойная звезда. 2 Эридана В не попадала на главную последовательность — эта звезда не является ни гигантом, ни карликом, имеет высокую температуру поверхности (около 10000 К), но при этом обладает низкой светимостью и на диаграмме оказывается значительно ниже главной последовательности. (Рассел поначалу посчитал эту звезду карликом, но Герцшпрунг ввел термин «темная белая звезда», или «белый карлик».)

Герцшпрунг и Рассел были весьма удивлены этим исключением из правил. Но в какой-то момент Рассел вспомнил свой разговор с Эдвардом К. Пикерингом, который в то время был самым влиятельным американским астрономом и занимал пост директора Гарвардской обсерватории. «Именно такие исключения и ведут к расширению наших познаний», — сказал ему Пикеринг в 1910 году. Через 25 лет после построения HR-диаграммы Эддингтон и Чандра попытались решить загадку белых карликов, считавшихся тогда конечной стадией эволюции любой звезды. В 1915 году астрономы впервые обнаружили поразительные свойства белого карлика Сириус В. Это открытие изменило не только жизнь Чандры и Эддингтона, но и всю астрофизику.

Сириус В является звездой-компаньоном Сириуса А, самой яркой звезды на ночном небе. Сириус привлек к себе пристальное внимание еще в 1844 году, когда знаменитый немецкий астроном и математик, директор Кёнигсбергской обсерватории Фридрих Вильгельм Бессель рассчитал, что расстояние от Земли до этой звезды приблизительно равно 9 триллионам 460 миллиардам километров. Астрономов середины XIX века это поразило. Радиус Земли — 6290 километров, расстояние от Земли до Солнца составляет почти 150 миллионов километров, а до самой отдаленной планеты Солнечной системы Плутона минимальное расстояние — 4,3 миллиарда километров. Сириус А дальше от Земли на многие триллионы километров, но его мощный свет, благодаря которому звезда видна в телескоп, долго не давал возможности обнаружить звезду-компаньона.

В том же 1844 году Фридрих Бессель обнаружил, что траектория движения Сириуса А периодически изменяется, и сделал вывод о влиянии некой «скрытой массы», которая вместе с Сириусом А вращается вокруг общего центра масс с периодом в 50 лет. 31 января 1862 года американский астроном и конструктор телескопов Альван Грэхэм Кларк при тестировании нового 18-дюймового телескопа-рефрактора впервые увидел спутник Сириуса А — звезду Сириус В.

Ведущий астроном США профессор Уолтер Сидни Адамс в Маунт-Вилсоновской обсерватории в Калифорнии измерил яркость Сириуса В, определил спектр его излучения и доказал, что 2 Эридан В не является единственным исключением на HR-диаграмме.

Итак, обнаружилась еще одна странная звезда — Сириус В. Как могут такие горячие звезды испускать так мало света? Где-то допущена ошибка? А может быть, тут как раз тот случай, о котором говорил Пикеринг?

По данным о периоде обращения Сириуса А и Сириуса В, несимметричности орбиты и расстояния до Земли астрономы смогли вычислить массу Сириуса В. Она оказалась почти равной массе Солнца[15], то есть приблизительно 2 миллиарда триллионов триллионов граммов, или приблизительно 2?1033 граммов (в системе единиц, используемых астрономами).

Был рассчитан также радиус Сириуса В, оказавшийся в двести раз меньше радиуса Солнца и примерно в три раза больше радиуса Земли. Другими словами, Сириус В, по массе равный Солнцу, имеет объем лишь немного больше объема Земли. А значит, его средняя плотность ошеломляюще велика — 61000 граммов на кубический сантиметр! На Земле чайная ложка такого вещества весила бы почти шесть тонн — столько весит слон! Для описания столь плотного вещества не подходят законы поведения идеального газа и требуются новые законы. Эддингтон назвал эту идею «абсурдной»[16], решил отложить решение проблемы белых карликов и сосредоточиться на физическом строении карликов и гигантов. Эддингтон хотел понять, почему звезды группируются в определенных областях HR-диаграммы, а не в каких-либо других ее участках.

Но это и был один из самых важных, требующих ответа вопросов — почему звезды светят? Эддингтон полагал, что теория, разработанная в конце XIX века немецким энциклопедистом Германом фон Гельмгольцем и британским ученым Уильямом Томсоном (лордом Кельвином), совершенно неверна. Согласно этой теории, частицы звездного газа сжимались под действием гравитации, при этом их температура увеличивалась, и они начинали излучать свет. Но если эта теория верна, то рассчитываемый возраст Солнца равен примерно 20 миллионам лет[17], а в 1917 году методом радиоактивной датировки уже был определен возраст Земли — 2 миллиарда лет. Как же могло оказаться, что Земля старше Солнца?

И тогда Эддингтон предложил альтернативную теорию, согласно которой происходит медленная аннигиляция протонов и электронов с выделением энергии в виде света. Число электронов в звездах столь огромно, что запасы энергии «почти неисчерпаемы». Однако если протоны и электроны взаимно уничтожаются (именно такой процесс в физике называют аннигиляцией), то и сама звезда в конце концов должна исчезнуть. Кроме того, следовало ожидать появления очень плотных и ярких звезд. Но в таком случае почему столь плотные звезды, как белые карлики, такие тусклые? И не существуют ли пока неизвестные нам процессы, которые каким-то образом препятствуют аннигиляции? Вот почему ученые решили, что, по-видимому, внутри звезд должны происходить некие ядерные взаимодействия, которые и служат неисчерпаемым источником их энергии. И Эддингтон занялся определением источника энергии звезд, сияющих миллиарды лет.

В 1920 году Фрэнсис Астон, сорокатрехлетний химик Кавендишской лаборатории в Кембридже, сделал потрясающее открытие: он показал, что четыре атома водорода весят больше одного атома гелия. К тому времени уже было известно, что звезды состоят в основном из водорода и гелия, причем атом гелия можно представить как четыре слившихся атома водорода. Оказалось, что масса ядра гелия меньше суммы масс четырех ядер водорода, хотя и лишь на восемь десятых процента.

Эддингтон предположил, что в данном случае может происходить превращение массы в энергию. Если это так, то потеря массы будет соответствовать огромному количеству энергии, согласно E = mc2, знаменитому уравнению Эйнштейна[18]. В этом уравнении E — энергия, m — масса и c — скорость света, равная 300000 км/с. Таким образом, исчезновение даже небольшой массы влечет выделение огромного количества энергии. Астон описал свое открытие очень ярко: «Переход количества водорода, содержащегося в стакане воды, в гелий высвобождает энергию, достаточную для путешествия на „Куин Мэри“ через Атлантику с максимальной скоростью».

Эддингтон сразу понял, что это открытие может объяснить столь длительное свечение звезд: «Если такое возможно в Кавендишской лаборатории, то и подавно на Солнце». В те времена ученые чрезвычайно мало знали о строении атомного ядра, но понимали, что для слияния протонов температура внутри звезды должны быть чрезвычайно высокой, чтобы придать частицам энергию, достаточную для преодоления огромного электростатического отталкивания. Правда, некоторые астрофизики утверждали, что температура внутри звезд не может быть столь высока, на что Эддингтон яростно отвечал: «Тогда идите и найдите место погорячее».

Именно тогда он начал разрабатывать свою знаменитую теорию, впоследствии названную стандартной моделью Эддингтона.

Он стремился описать происходящее внутри звезд исключительно математическими методами. В 1917 году Эддингтон впервые предложил свою теорию, но в применении только к гигантским звездам с настолько низкой плотностью, что к ним можно было применять законы для идеального газа. Температура внутри звезд достигает десятков миллионов градусов Кельвина, а значит, звезда излучает в рентгеновском диапазоне и испускает высокоэнергетичные кванты. При взаимодействии с атомами звезд рентгеновские лучи отрывают от них электроны, начиная с внешних орбит, где электроны слабее связаны с ядром. Этот процесс ослабляет энергию излучения во внутренней части звезды. Оторванные («свободные») электроны некоторое время хаотически движутся, пока их не захватят другие атомы, из которых электроны снова выбиваются излучением. Это приводит к дальнейшему ослаблению испускаемой энергии внутри звезды.

Вот как это описывает Эддингтон: «Внутри звезды среди атомов и электронов творится полная сумятица. Представьте себе такую картину: со скоростью 80 км в секунду летают оборванные атомы, на которых, как лохмотья после драки, болтаются оставшиеся электроны. Вырванные из них электроны носятся в сто раз быстрее в поисках нового пристанища. Смотрите! — вот электрон приближается к атомному ядру, но с большой скоростью пролетает мимо него по крутой кривой. При следующей встрече с атомом он оказывается ближе, захватывается и прилипает к нему, теряя свободу. Но только на мгновение. Едва атом обретает новую оболочку, как на него налетает новый квант света. С огромной скоростью электрон опять вырывается на свободу в поисках новых приключений».

Для определения температуры звезды и интенсивности ее излучения Эддингтон должен был найти среднее число свободных электронов, приходящееся на атом, которое в астрофизике называют «средним молекулярным весом». В то время астрономы полагали, что звезды состоят из тех же элементов, что и Земля, то есть почти не содержат водорода и гелия и состоят из кислорода, железа, натрия, кремния, калия, магния, алюминия и кадмия[19]. Учитывая это предположение, а также тот факт, что не все атомы теряют свои электроны, Эддингтон определил средний молекулярный вес равным 2,1.

Затем он предположил, что химический состав одинаков для всех звезд, а значит, одинаков и их молекулярный вес. Следующий, подлежащий решению вопрос был о непрозрачности звезды, то есть каким образом химические элементы не дают излучению выйти наружу. Если излучение будет свободно испускаться, то звезда очень быстро остынет, но если звезда непрозрачна для излучения, то по мере его накопления она может взорваться. Эддингтон начал с того, что использовал математическую формулу для непрозрачности и вычислил для нее теперь уже «физическую величину». Затем он преобразовал эту формулу с учетом условий внутри звезды и получил теперь уже «астрономическую величину» непрозрачности. При подстановке среднего молекулярного веса 2,1 им была рассчитана «астрономическая величина», которая подходила для любой звезды[20].

Из этих расчетов Эддингтон сделал важный вывод о том, как соотносятся массы звезд с их яркостью: чем больше масса гигантской звезды, тем она ярче. Он назвал это соотношением масса — светимость. Удивительно, что его вывод оказался правильным не только для звезд-гигантов с низкой плотностью, описываемых законами идеального газа, но и для гораздо более плотных звезд-карликов. Таким образом, измерение светимости звезды астрономическими методами позволяло рассчитать ее массу. Астрономы-теоретики подтвердили своими расчетами результаты Эддингтона и объяснили, почему более массивные звезды ярче менее массивных и почему, например, так необычайно ярок Сириус. И лишь поведение белых карликов эта теория описать не могла.

Эддингтон был поражен полученным результатом: «При сравнении поведения этих плотных звезд то есть карликов, хотя и не белых, я не ожидал, что они попадут на одну кривую и будут соответствовать моей теории». Эддингтон полностью опроверг теорию Рассела, считавшего карлики слишком плотными, чтобы подчиняться законам идеального газа. Эддингтон предположил, что, поскольку атомы внутри звезды почти полностью лишены электронов, они во много раз меньше атомов на Земле и занимают внутри звезды намного меньший объем пространства. Вот почему вещество внутри звезды ведет себя как идеальный газ даже при очень большой плотности. Обычная звезда-карлик может быть столь же плотной, как платина, и все же вести себя как идеальный газ — и даже плотность платины еще далека от максимально возможной плотности.

Соотношение масса — светимость Эддингтона отлично согласовывалось с наблюдениями астрономов, но это соответствие было достигнуто высокой ценой. Для получения правильных результатов Эддингтону пришлось допустить, что астрономическая величина непрозрачности звезд в десять раз больше ее физической величины. Возник «парадокс непрозрачности».

Этот существенный недостаток своей модели Эддингтон охотно признавал. Для его устранения потребовалось бы постулировать наличие в звездах огромного количества водорода. Это стало совершенно ясно при сравнении физических и астрономических величин, но увеличение количества водорода должно было бы уменьшить радиационное давление внутри звезды, которое является важным компонентом модели, что сделало бы стандартную модель несостоятельной.

Тем временем индийский физик Мегнад Саха сделал открытие, которое поставило под сомнение стандартную модель Эддингтона. В 1920 году Саха обнаружил, что температура поверхности звезды связана с химическим составом ее верхних слоев. На основании этого он показал, что в атмосфере Солнца водорода в миллион раз больше, чем любого другого химического элемента. Не такая же ли картина и внутри светила? А если так, то почему водорода так много в звездах и так мало на Земле? Эддингтон очень надеялся, что последующие уточнения теории Саха устранят противоречия, но этого не произошло.

В 1925 году Сесилия Пэйн, бывшая студентка Эддингтона, защитила диссертацию и начала работать в американской Гарвардской обсерватории. Применив усовершенствованную теорию Саха и изучив спектр излучения Солнца, она убедительно доказала присутствие в нем огромного количество водорода. Однако Рассел, горячий сторонник Эддингтона, раздраженно написал Пэйн, что это «совершенно невозможно». Опасаясь его гнева, Пэйн была вынуждена отступить и заявила, что такого количества водорода на Солнце «по-видимому, быть не может». А когда в сентябре 1925 года она посетила Кембридж и сообщила Эддингтону о своем результате, тот кратко ответил: «Ну, это на поверхности звезд, но вы не знаете, что у них внутри»[21].

Однако в конце концов Рассел вынужден был согласиться с Пэйн, которая к 1932 году собрала множество доказательств своей теории. 27-летний датский астрофизик Бенгт Стрёмгрен, впоследствии ставший другом и коллегой Чандры, предположил, что по крайней мере треть любой звезды должна состоять из водорода. При этом астрономические и физические значения непрозрачности пришли в соответствие, и Эддингтону пришлось уступить.

В 1915 году Эйнштейн обнародовал общую теорию относительности. Но и Эддингтон одновременно с астрофизическими расчетами сделал несколько пионерских работ по теории относительности. Вскоре он стал профессором астрономии и директором Кембриджской обсерватории. Шла мировая война, и революционным теориям Эйнштейна не сразу удалось пересечь Ла-Манш. Благодаря своим астрономическим исследованиям Эддингтон познакомился с голландским астрономом Виллемом де Ситтером из Лейденского университета в нейтральной Голландии, который изучал астрономические следствия теории Эйнштейна. В 1917 году де Ситтер выслал Эддингтону последние статьи по общей теории относительности Эйнштейна. Эддингтон сразу же понял значение работ Эйнштейна, а в следующем году Физическое общество поручило ему сделать о них доклад. Этот виртуозный «Доклад о теории относительности в приложении к гравитации» привлек внимание большинства британских ученых и утвердил Эддингтона в качестве общепризнанного специалиста по теории относительности.

Между тем обстановка на военных фронтах сильно обострилась. В 1916 году в Великобритании была введена воинская повинность. Квакер Эддингтон мог отказаться от воинской службы по религиозным соображениям, но в то время, когда молодые патриоты всех стран добровольно уходили на войну, такой отказ считался позорным. Кембриджские ученые обратились к правительству с просьбой освободить Эддингтона от воинской повинности, но министерство внутренних дел отклонило прошение. На первом слушании 14 июня 1918 года Эддингтон заявил, что в силу своих религиозных убеждений не может воевать и не видит ничего страшного в том, чтобы присоединиться к своим братьям квакерам в мобилизационных лагерях Северной Ирландии и чистить картошку для новобранцев. В конце концов вмешался директор Гринвичской обсерватории и предложил, чтобы Эддингтона освободили от воинской повинности для руководства британской научной экспедицией с целью наблюдения полного затмения Солнца 29 мая 1919 года. Научной задачей экспедиции была проверка общей теории относительности Эйнштейна. Так Эддингтон получил год отсрочки.

Вскоре было подписано перемирие, а Эддингтон продолжал готовиться к поездке. Было необходимо подтвердить или опровергнуть вывод общей теории относительности об отклонении светового луча от дальних звезд вблизи Солнца. Звезды на сравнительно небольшом расстоянии от Солнца тогда умели наблюдать только в период полного солнечного затмения.

Это было поистине замечательное приключение. В начале марта 1919 года из Англии отплыли две экспедиции. Одна направилась в город Собрал в Бразилии, а другая, во главе с Эддингтоном, — на крошечный португальский остров Принсипе около западного побережья Африки. К середине мая Эддингтон с коллегами полностью подготовились к эксперименту и сделали пробные снимки, но в день затмения возникло серьезное препятствие. Затмение ожидалось в два часа дня, но с утра пошел проливной дождь, угрожавший отменить всю программу наблюдений.

«Около полудня дождь прекратился, — писал Эддингтон, — и приблизительно в 13.30 мы начали фотографировать Солнце. Нам нужны были достоверные фотографии. Мне не удалось непосредственно наблюдать затмение, так как я был занят съемкой. Только два раза я взглянул на него, сначала — чтобы убедиться, что затмение началось, а потом — чтобы выяснить, было ли оно полным».

Эддингтон с коллегами сфотографировали звезды, которые визуально оказались вблизи края затененного Солнца. Затем они тщательно измерили положения этих звезд и сравнили их с данными на то время, когда Солнце находилось в другой части небосвода. Эддингтон лично проделал тщательные измерения микрометром на лучших из полученных фотографий. К всеобщему восторгу смещения звезд оказались близки к предсказываемым общей теорией относительности. Эддингтон потом часто рассказывал, как на первой же фотопластинке получил величины, «предсказанные Эйнштейном». Он называл это величайшим моментом в своей жизни. «New York Times» озаглавила статью об экспедиции в шутливой манере: «Звезды находятся не там, где нам кажется, и не там, где показывают расчеты, но не надо волноваться, — Эйнштейн знает точно, где они». Общественность особенно оценила иронию происшедшего — британский ученый проверил «немецкую теорию» после окончания Первой мировой войны.

Чтобы отметить драматические события на острове Принсипе, Эддингтон сочинил небольшую пародию на популярные рубаи Омара Хайяма в переводе Эдварда Фицджеральда. Вот одна из строф:

Теперь я знаю, прав ли Эйнштейн,Или же его теории рассыпались в прах.Всего один луч света звезды в темноте дал ответНамного лучше, чем часы тяжелого труда при свечах.

Благодаря успеху экспедиции Эддингтон прославился во всем мире как лучший эксперт по теории относительности. Однажды за обедом ученый развлекал присутствующих рассказом, как однажды он беседовал с известным физиком (чье имя предпочел не называть) в Королевском обществе. «Профессор Эддингтон, — воскликнул тот физик шутливым тоном. — Вы, должно быть, один из трех в мире, кто понимает, что это такое — относительность!» Тут возникло замешательство, и физик сказал: «Не скромничайте, Эддингтон». На что я возразил: «О, я нисколько не скромничаю! Меня просто интересует, кто же этот третий!»

Для разрешения загадки белых карликов Эддингтон объединил выводы из всех своих теорий. Астрофизики предполагали, что звезды образуются следующим образом: далеко от нас в межзвездном пространстве, где находятся огромные скопления газа, его частицы начинают сливаться под действием гравитационного притяжения и их диффузная смесь становится более компактной, с четкими границами. Частицы постоянно сталкиваются, и по закону идеального газа появляется давление, по направлению противоположное силе тяжести. Но огромная сила гравитации продолжает прижимать частицы газа друг к другу, повышая их температуру. В результате они начинают излучать направленный вовне свет, оказывающий определенное давление.

В повседневной жизни этот эффект незначителен — так, к примеру, мы не чувствуем давления света автомобильных фар. Но звезда такая большая и яркая, что потоки излучений вырываются из нее с силой урагана. В результате давление излучения оказывается настолько огромным, что создает стабильные светящиеся массы — звезды. Но какую роль играет световое давление при образовании звезд? В 1917 году Эддингтон предположил, что устойчивое равновесие в звезде возникает, когда гравитационное давление звезды, направленное внутрь, уравновешивается давлением газа и давлением света, испускаемого частицами. Гипотеза Эддингтона стала значительным шагом в понимании природы звезд; она — краеугольный камень современной астрофизики.

А что происходит в конце жизненного цикла звезды? Эддингтон полагал, что состарившиеся звезды становятся белыми карликами. Но тогда каким образом звезды остаются горячими, но столь слабо светящимися? Если удастся это объяснить, то станет ясна и конечная судьба звезд. Эддингтон попробовал составить вероятную цепь событий. При старении звезда излучает все меньше и меньше света, ее радиационное давление уже не уравновешивает силу тяжести, звезда сжимается и превращается в белый карлик. Однако возникает парадокс. Плотность белых карликов огромна, во много раз больше плотности самого плотного вещества на Земле. Для остывания плотность звезды должна уменьшаться до плотности вещества Земли, но оказалось, что звезды продолжают сжиматься и уплотняться. Звезды не остывают, хотя их светимость уменьшается. Может ли так продолжаться до бесконечности? Где же конец? Могут ли они сжаться до бесконечно малого объема? Вот как это представлял себе Эддингтон: «Казалось бы, звезда ставит себя в затруднительное положение. В конце концов запас ее энергии должен истощиться, и она остынет. Но возможно ли это? Звезда обрела огромную плотность благодаря высокой температуре, которая разрушила атомы. При охлаждении она должна увеличиться в объеме примерно в 5000 раз. Но расширение требует энергии — на выполнение работы против силы тяжести, а у звезды энергии больше не осталось. Что же, спрашивается, должно происходить в звезде, если она непрерывно теряет тепловую энергию, но не имеет достаточно энергии для остывания?»

Это было волнующей тайной. В книге «Внутреннее строение звезд» Эддингтон обходил стороной эту проблему, белые карлики оказались неприятным отклонением от теорий, описывающих структуры звезд, в значительной степени разработанных благодаря Эддингтону. Однако загадка белого карлика его не оставляла. В 1914 году он заявил, что невероятно высокая плотность Сириуса В «абсурдна». Но десять лет спустя он сформулировал свое соотношение масса — светимость и обнаружил, что законы идеального газа справедливы даже при высоких плотностях внутри карликовых звезд типа Солнца. Это заставило его предположить, что при значительно более высоких температурах внутри белых карликов все атомы могут быть полностью лишены электронов и в результате упакованы гораздо более плотно[22].

В январе 1924 года Эддингтон написал своему другу, астроному Уолтеру Адамсу, наблюдавшему Сириус В еще в 1914 году, что он «в последнее время развлекается сумасбродной идеей» и что «невероятная» плотность Сириуса В все же возможна. Он предложил проверить с использованием общей теории относительности Эйнштейна, действительно ли плотность белых карликов при их малом радиусе может быть столь высока.

Общая теория относительности предсказывает, что интенсивное гравитационное поле белого карлика влияет на длины волн излучаемого света. Сила тяжести на поверхности Сириуса В в 100 тысяч раз больше, чем на поверхности Земли, и это приводит к увеличению длины волны испускаемого атомами света. Длины волн смещаются в сторону красной части спектра; это явление называется «гравитационным красным смещением».

Разница в длинах волн света, испускаемых атомом вещества Сириуса В и тем же самым атомом на Земле, определяется дробью: масса Сириуса В, деленная на его радиус. Масса Сириуса В и его радиус к тому времени уже были рассчитаны. (Предполагая, что масса Сириуса В составляет 0,85 массы Солнца, астрофизики рассчитали его радиус по данным о его светимости и температуре.) Используя эти данные, Эддингтон получил величину красного смещения.

Затем он предложил Адамсу измерить красное смещение Сириуса В и сравнить полученные результаты с его расчетами. Измерения были исключительно сложными. Сириус А — чрезвычайно яркая звезда, спектр ее излучения накладывается на спектр Сириуса В, и разобраться, какие спектральные линии принадлежат Сириусу А, а какие Сириусу В, невероятно трудно. Однако Адамс решил эту задачу и получил результаты, очень близкие к полученным Эддингтоном. Подтвердилась и величина гравитационного красного смещения, и малый радиус при абсурдно большой плотности Сириуса В. Эддингтон теперь имел неопровержимые доказательства, что Сириус В действительно обладает огромной, почти невероятной плотностью; его расчеты были верны. Эксперимент представил также дополнительные доказательства справедливости общей теории относительности, согласно которой гравитационное поле Сириуса В действительно изменяет излучаемый звездой свет. Эддингтон был полностью удовлетворен. Он показал, что общая теория относительности предсказывает совершенно необычные свойства пространства вблизи сверхплотных объектов типа белых карликов. Например, радиус звезды супергиганта Бетельгейзе примерно 160 миллионов километров, то есть больше радиуса орбиты Земли вокруг Солнца. Но плотность ее в миллион раз меньше, чем у Солнца. А что произойдет, если такая громадина будет иметь плотность Солнца или даже белого карлика? Согласно Эддингтону, «силы тяготения будут столь велики, что свет не сможет вырваться из пространства звезды, лучи вернутся к звезде, как камень, падающий на землю… Масса звезды создаст такую кривизну пространства, что оно будет замкнуто вокруг этой звезды».

Идею о возможности существования «темных звезд» впервые высказал английский естествоиспытатель Джон Митчелл еще в 1784 году, спустя почти сто лет после открытия Ньютоном теории тяготения. Гравитационное притяжение этих звезд так велико, что свет не может из них вырваться. В 1796 году французский математик и ученый Пьер Симон Лаплас развил эту идею, хотя и не упомянул Митчелла. Эддингтон ничего об этом не знал, что было неудивительно — он всегда с презрением относился к истории научного познания, которую считал совершенно бесполезной. По законам идеального газа энергия белых карликов слишком мала, чтобы они увеличивались в объеме. Поэтому эти звезды не могут закончить свое существование, превратившись в сгусток холодной материи. Белые карлики должны превратиться в точку бесконечной плотности и исчезнуть в недрах Вселенной. Но вместо того, чтобы развивать свой удивительный прогноз, Эддингтон решил обойти эту «любопытную проблему» стороной, назвав ее «не фатальной». И наверняка кто-нибудь когда-нибудь обязательно ею займется, ведь «белых карликов очень много».

В 1926 году, когда Эддингтон написал эти слова, достоверно были известны только четыре карлика, а к 1938 году были обнаружены уже восемнадцать! В наши дни сотни белых карликов зарегистрированы лишь в небольшой области не слишком далеко от Солнца. Они настолько слабо светятся, что их можно увидеть только здесь, где они составляют около 9 процентов звезд, наблюдаемых нашими телескопами. Астрономы подозревают, что они являются наиболее распространенным видом звезд, и дружно поддерживают теорию, что, умирая, звезды становятся белыми карликами.

Эддингтон предвидел это еще в 1926 году. В предисловии к своей книге «Внутреннее строение звезд» он пишет, что в соответствии с законом идеального газа белые карлики должны коллапсировать, но этот вывод для него неприемлем. Возникло препятствие, сдерживающее научный прогресс. Но в том же году коллега Эддингтона Ральф Фаулер предложил применить для расчетов этих процессов квантовую механику, в которой он хорошо разбирался. Он хотел решить трудную задачу, которая не поддалась Эддингтону, — доказать, что звезды не исчезают, но угасают мирно, как горные породы, и таким образом восстановить гармонию и красоту Вселенной.

<<< Назад
Вперед >>>

Генерация: 5.322. Запросов К БД/Cache: 3 / 0
Вверх Вниз