Книга: Жизнь на грани
Гены
<<< Назад Присмотримся к жизни внимательней |
Вперед >>> Жизнь таинственно ухмыляется в ответ |
Гены
Способность живого организма исправно передавать по наследству информацию, благодаря чему на свет появляются новые организмы — будь то малиновка, рододендрон или человек, — столетиями являлась для нас непостижимой тайной. В 1653 году в своем «51-м исследовании» английский врач Уильям Гарвей писал: «Несмотря на неоспоримость известной идеи о том, что эмбрион происходит и рождается на свет от мужского и женского полов и соответственно яйцо (как и цыпленка, вылупляющегося из него) производят петух и курица, ни одной медицинской школе, ни гениальному уму Аристотеля не удалось разгадать тайну того, каким образом семя петуха „чеканит“ из яйцеклетки цыпленка».
Два века спустя завесу этой тайны приоткрыл австрийский монах и биолог Грегор Мендель, который в середине XIX века выращивал горох в саду Августинского монастыря в Брно. В ходе наблюдений за растениями Мендель пришел к выводу о том, что наличие у гороха некоторых признаков, таких как цвет лепестков или форма горошин, зависит от наследуемых «факторов», которые могут передаваться без изменений от одного поколения другому. «Факторы» Менделя, таким образом, обеспечивали создание своего рода хранилища наследственной информации, что позволяло растениям гороха сохранять свой вид неизменным на протяжении сотен поколений, а семени петуха — «чеканить» из яйцеклеток цыплят.
Как известно, большинство современников Менделя, включая Дарвина, не обратили на открытие австрийца никакого внимания. Результаты его трудов оставались в забвении вплоть до начала XX века. Его «факторы» были названы генами. Вскоре это понятие было успешно встроено в укрепляющий свои позиции в биологии XX века механистический взгляд на мир. Несмотря на то что Мендель утверждал, что эти структуры находятся внутри живых клеток, никто в то время не наблюдал их и не мог предположить, из чего они состоят. Однако в 1902 году американский генетик Уолтер Саттон обратил внимание на то, что внутриклеточные структуры хромосомы способны передавать информацию, хранящуюся в менделевских «факторах». Это наблюдение привело Саттона к выводу о том, что гены находятся в хромосомах.
Тем не менее хромосомы — это относительно большие и сложные структуры, состоящие из белка, сахаров и дезоксирибонуклеиновой кислоты (ДНК). В то время ученым не было понятно, связан ли какой-либо из этих компонентов с механизмом наследственности. Позднее, в 1943 году, канадскому ученому Освальду Эвери удалось передать ген из одной бактериальной клетки в другую путем извлечения ДНК из клетки-донора и встраивания ее в клетку-реципиент. Эксперимент доказал, что именно ДНК, содержащаяся в хромосомах, а не белки или какие-либо другие вещества, хранит и передает генетическую информацию[14]. Казалось, в ДНК больше нет ничего необычного, волшебного — все считали ее обычным химическим веществом.
Но важный вопрос все же оставался без ответа: как это все работает? Каким образом химическое вещество переносит в себе информацию, необходимую для того, чтобы «семя петуха „чеканило“ из яйцеклетки цыпленка»? И каким образом гены копируются и передаются от одного поколения другому? Традиционная химия, изучающая взаимодействия шаровидных больцмановских молекул, казалось, не может объяснить способ хранения, копирования и надежной передачи генетической информации.
Наверняка всем известно, что в 1953 году была разгадана и эта тайна: в Кавендишской лаборатории Кембриджского университета Джеймсу Уотсону и Фрэнсису Крику на основе экспериментальных данных их коллеги Розалинд Франклин удалось разработать модель структуры ДНК — двойную спираль. Было доказано, что любая цепочка ДНК представляет собой нечто вроде молекулярной нити, состоящей из атомов фосфора, кислорода и сахара (дезоксирибозы), а также особых химических структур — нуклеотидов[15], нанизанных на нить, словно бусины. В этих бусинах содержатся азотистые основания четырех разновидностей: аденин (A), гуанин (G), цитозин (C) и тимин (T). На нити ДНК они располагаются в одномерной последовательности букв генетического кода, например GTCCATTGCCCGTATTACCG. Во время войны Фрэнсис Крик работал в научно-исследовательской лаборатории Британского адмиралтейства (в то время — командный орган Королевского флота). Неудивительно, что он мог быть знаком с теорией кодов, а также с различными шифрами вроде тех, что использовались в секретных сообщениях, созданных с помощью немецких шифровальных машин «Энигма» (во время войны их успешно расшифровывали в Блетчли-Парке, где располагалось главное шифровальное ведомство Великобритании). В любом случае, когда Крик увидел нить ДНК, он сразу заметил в ней код — последовательность блоков информации, представляющей собой важнейшие инструкции к действию механизма наследственности. Кроме того (об этом мы подробно поговорим в главе 7), открытие спиралевидной структуры нити ДНК позволило ученым сформулировать ответ на вопрос о том, каким образом копируется генетическая информация. Вот так, одним махом были разгаданы две величайшие научные тайны.
Открытие структуры ДНК стало своего рода механистическим ключом к пониманию тайны генов. Гены — это химическое соединение, а в основе химии лежит термодинамика. Так неужели открытие двойной спирали ДНК наконец-то вернуло в лоно классической науки такой объект изучения, как жизнь?
<<< Назад Присмотримся к жизни внимательней |
Вперед >>> Жизнь таинственно ухмыляется в ответ |
- Дороги к Белухе
- Аналогия из геологии
- Вода и жизнь на Земле
- Глава XV Каким он должен быть?
- 4. Заразные болезни, их причины и способы борьбы с ними
- Предисловие
- 1. Вирусы кори и паротита
- Морская «нечисть»
- Что такое свет?
- Глава 8 Промышленная революция. Как паровой двигатель «продвинул» капиталистический Запад на восток
- 939. Почему устрицы так восприимчивы к пестицидам?
- 944. Сравнимы ли радиоактивность моря и радиоактивность суши?