Книга: Физиология человека. Общая. Спортивная. Возрастная

10.2. Обмен газов в легких и их перенос кровью

<<< Назад
Вперед >>>

10.2. Обмен газов в легких и их перенос кровью

Переход О, из альвеолярного воздуха в кровь и СО2 из крови в альвеолы происходит только путем диффузии. Никакого механизма активного транспорта газов здесь не существует. Движущей силой диффузии являются разности (градиенты) парциальных давлений (напряжений) О2 и СО2 по обе стороны альвеолярно-капиллярной мембраны или аэрогематического барьера. Напряжение газов в различных средах представлено в табл. 5.

Таблица 5

Напряжение О2 и СО2 при спокойном дыхании воздухом (мм рт. ст.)


Кислород и углекислый газ диффундируют только в растворенном состоянии, что обеспечивается наличием в воздухоносных путях водяных паров, слизи и сурфактантов. В ходе диффузии через аэрогематический барьер молекулы растворенного газа преодолевают большое сопротивление, обусловленное слоем сурфактанта, альвеолярным эпителием, мембранами альвеол и капилляров, эндотелием сосудов, а также плазмой крови и мембраной эритроцитов.

Диффузионная способность легких для кислорода очень велика. Это обусловлено огромным числом (сотнями миллионов) альвеол и большой их газообменной поверхностью (около 100 м2), а также малой толщиной (около 1 мкм) альвеолярно-капиллярной мембраны. Диффузионная способность легких у человека примерно равна 25 мл О2 в 1 мин в расчете на 1 мм рт. ст. градиента парциальных давлений кислорода. Учитывая, что градиент рО2 между притекающей к легким венозной кровью и альвеолярным воздухом составляет около 60 мм рт. ст., этого оказывается достаточно, чтобы за время прохождения крови через легочный капилляр (около 0,8 с) напряжение кислорода в ней успело уравновеситься с альвеолярным рО2.

Диффузия СО2 из венозной крови в альвеолы даже при сравнительно небольшом градиенте рСО2 (около 6 мм рт. ст.) происходит достаточно легко, так как растворимость СО2 в жидких средах в 20–25 раз больше, чем у кислорода. Поэтому после прохождения крови через легочные капилляры рСО2 в ней оказывается равным альвеолярному и составляет около 40 мм рт. ст.

Дыхательная функция крови прежде всего обеспечивается доставкой к тканям необходимого им количества О2. Кислород в крови находится в двух агрегатных состояниях: растворенный в плазме (0,3 об.%) и связанный с гемоглобином (около 20 об.%) – оксигемоглобин.

Отдавший кислород гемоглобин считают восстановленным, или дезоксигемоглобином. Поскольку молекула гемоглобина содержит 4 частицы гема (железосодержащего вещества), она может связать четыре молекулы О2. Количество О2, связанного гемоглобином в 100 мл крови, носит название кислородной емкости крови и составляет около 20 мл О2. Кислородная емкость всей крови человека, содержащей примерно 750 г гемоглобина, приблизительно равна 1 л.

Каждому значению рО2 в крови соответствует определенное процентное насыщение гемоглобина кислородом. Кривую зависимости процентного насыщения гемоглобина кислородом от величины парциального напряжения называют кривой диссоциации оксигемоглобина (рис. 21). Анализ хода этой кривой сверху вниз показывает, что с уменьшением рО2 в крови происходит диссоциация оксигемоглобина, т. е. процентное содержание оксигемоглобина уменьшается, а восстановленного – растет.


Рис. 21. Кривая диссонации оксигемоглобина в крови человека в покое:

А – содержание HbО2 в артериальной крови. В – то же в венозной крови

В различных условиях деятельности может возникать острое снижение насыщенности крови кислородомгипоксемия. Причины гипоксемии весьма разнообразны. Она может развиваться вследствие снижения рО2 в альвеолярном воздухе (произвольная задержка дыхания, вдыхание воздуха с пониженным рО2), при физических нагрузках, а также при неравномерной вентиляции различных отделов легких.

Образующийся в тканях СО2 диффундирует в тканевые капилляры, откуда переносится венозной кровью в легкие, где переходит в альвеолы и удаляется с выдыхаемым воздухом. Углекислый газ в крови (как и О2) находится в двух состояниях: растворенный в плазме (около 5 % всего количества) и химически связанный с другими веществами (95 %). СО, в виде химических соединений имеет три формы: угольная кислота (Н9СО3), соли угольной кислоты (NaHCО3) и в связи с гемоглобином (HbНСО3).

В крови тканевых капилляров одновременно с поступлением СО2 внутрь эритроцитов и образованием в них угольной кислоты происходит отдача О2 оксигемоглобином. Восстановленный Hb легко связывает водородные ионы, образующиеся при диссоциации угольной кислоты. Таким образом, восстановленный Hb венозной крови способствует связыванию СО2, а оксигемоглобин, образующийся в легочных капиллярах, облегчает его отдачу.

В состоянии покоя с дыханием из организма человека удаляется 230–250 мл СО2 в 1 минуту. При удалении из крови СО2 из нее уходит примерно эквивалентное число ионов водорода. Таким порядком дыхание участвует в регуляции кислотно-щелочного состояния во внутренней среде организма.

Обмен газов между кровью и тканями осуществляется также путем диффузии. Между кровью в капиллярах и межтканевой жидкостью существует градиент напряжения О2, который составляет 30–80 мм рт. ст., а напряжение СО2 в интерстициальной жидкости на 20–40 мм рт. ст. выше, чем в крови. Кроме того, на обмен О2 и СО2 в тканях влияют площадь обменной поверхности, количество эритроцитов в крови, скорость кровотока, коэффициенты диффузии газов в тех средах, через которые осуществляется их перенос.

Артериальная кровь отдает тканям не весь О2. Разность между об.% О2 в притекающей к тканям артериальной крови (около 20 об.%) и оттекающей от них венозной кровью (примерно 13 об.%) называется артерио-венозной разностью по кислороду (7 об.%). Эта величина служит важной характеристикой дыхательной функции крови, показывая, какое количество О, доставляют тканям каждые 100 мл крови. Для того чтобы установить, какая часть приносимого кровью О2 переходит в ткани, вычисляют коэффициент утилизации (использования) кислорода. Его определяют путем деления величины артериовенозной разности на содержание О2 в артериальной крови и умножения на 100. В покое для всего организма коэффициент утилизации О2 равен примерно 30–40 %. Однако в миокарде, сером веществе мозга, печени и корковом слое почек он составляет 40–60 %. При тяжелых физических нагрузках коэффициент утилизации кислорода работающими скелетными мышцами и миокардом достигает 80–90 %.

В снабжении мышц О2 при тяжелой работе имеет определенное значение внутримышечный пигмент миоглобин, который связывает дополнительно 1,0–1,5 л О2. Связь О2 с миоглобином более прочная, чем с гемоглобином. Оксимиоглобин отдает О2 только при выраженной гипокеемии.

<<< Назад
Вперед >>>

Генерация: 0.207. Запросов К БД/Cache: 0 / 0
Вверх Вниз