Книга: Что, если Ламарк прав? Иммуногенетика и эволюция

Генетическая информация передается от генов (нуклеиновых кислот) к белкам -центральная догма молекулярной биологии

<<< Назад
Вперед >>>

Генетическая информация передается от генов (нуклеиновых кислот) к белкам -центральная догма молекулярной биологии

До сих пор мы рассказывали о том, как организован геном человека, тот наследственный чертеж, по которому «строится» наш организм; упомянули мы и о том, что большинство химических реакций происходит с участием специфических белков — ферментов. Возникает вопрос, как информация, записанная в ДНК, превращается в тысячи различных белков, необходимых для функционирования и роста клеток? Как из одной клетки развиваются мириады разных клеток, из которых состоят ткани высокоорганизованных животных?

На эти ключевые вопросы ученые начали искать ответы только после открытия структуры ДНК. В начале 1960-х годов Фрэн-сис Крик, Сидней Бреннер (Brenner) и их коллеги совместно с Гобиндом Кораной (Khorana) и Маршаллом Ниренбергом (Nirenberg) выяснили, как информация, записанная в молекуле ДНК, может быть переведена с языка линейной последовательности оснований (GCTGGACTAATC) на язык соответствующей последовательности аминокислот (Ala, Gly, Leu, lieu). Эта грандиозная задача по дешифровке была решена к 1966 г., когда были окончательно установлены правила генетического кода. Определенный набор из трех оснований, расположенных в определенном порядке, соответствует определенной аминокислоте в белковой цепи. Так, в нашем примере GCT кодирует Ala (ала-нин), GGA кодирует Gly (глицин) и так далее (табл. 1.2 и приложение).

Экспериментально было показано, что существует информационная молекула — посредник между ДНК и белком. Этим посредником оказалась РНК, которая, в отличие от ДНК, состоит только из одной цепи. Однако ее химический состав оказался очень похожим на ДНК. И РНК, и ДНК построены из одинаковых основных строительных блоков. РНК содержит основания А (аденин), G (гуанин), С (цитозин) и U (урацил). Соотношение между двумя нуклеиновыми кислотами следующее. Если порядок оснований в ДНК 3'-TCGAATA-5', то порядок оснований в РНК (копия которой синтезируется по ДНК-матрице) будет 5'—AGCUUAU—3', где вместо Т (тимин) теперь стоит U (урацил). Мы уже упоминали это правило в гл. 1, табл. 1.2.


Рис. 2.4. Поток генетической информации - центральная догма молекулярной биологии.

А.Поток генетической информации направлен от нуклеиновых кислот (ДНК/РНК) к белкам и никогда в обратном направлении.Это означает, что последовательности оснований ДНК и РНК могут служить матрицами для синтеза других ДНК- или РНК-последовательностей, а аминокислотные последовательности в белках никогда не служат матрицей для синтеза РНК (или ДНК) последовательности оснований. Основные процессы копирования нуклеиновых кислот — это ДНК-> ДНК (репликация ДНК), ДНК->РНК (транскрипция), РНК->РНК (репликация РНК) и РНК->ДНК (обратная транскрипция). Аминокислотные последовательности, составляющие белки, определяются последовательностью оснований в. молекуле мРНК. Этот сложный процесс, называемый трансляцией, проходит в рибосомах на цитоплазме.

Б. Первый этап репликации ДНК заключается в локальном раскручивании двойной спирали, в результате которого матричные последовательности становятся доступными для копирования (этот участок называется вилкой репликации). Затем сложный набор белковых ферментов, включая ДНК-полимеразу, копирует каждую цепь, синтезируя комплементарную цепь (скорость копирования примерно 1000 оснований в секунду). Синтез всегда идет в направлении от 5'- к 3'-концу. Когда процесс достигает конца матричной молекулы, каждая из двух дочерних нитей состоит из одной новой цепи и одной родительской.

В. Отдельные участки ДНК-последовательности копируются или в мРНК, которая кодирует специфическую последовательность аминокислот (см. приложение), или в рибосомную РНК (рРНК), или в транспортную РНК (тРНК), которые являются частью молекулярного механизма, необходимого для трансляции мРНК в белок (см. приложение). РНК-по-лимераза копирует матричную цепь ДНК (чтобы это могло произойти, необходимо локальное раскручивание спирали ДНК). Синтез РНК также идет в направлении от 5'- к 3'-концу, так что матричная цепь ДНК имеет антипараллельную ориентацию от 3' к 5'. Последовательность оснований за кодирующим участком гена определяет терминацию (конец) синтеза РНК.

 

Самое важное — это то, что последовательность оснований ДНК определяет комплементарную последовательность РНК. Процесс синтеза на ДНК-последовательности соответствующей РНК-последовательности называется транскрипцией. На рис. 2.4 обратите внимание, что движение генетической информации происходит в направлениях ДНК -> РНК -> белок.

Также обратите внимание на то, что РНК-последовательность может служить матрицей для синтеза ДНК-последовательности (обратная транскрипция), а последовательность аминокислот в белке никогда не служит матрицей для обратного потока информации от белковой последовательности к РНК.

Все это еще не дает ответа на поставленные в начале вопросы. Как последовательность ДНК, переписанная в последовательность РНК (которая называется информационной РНК, или мРНК), переводится в белок? Большая часть данных, отвечающих на этот вопрос, получена М. Ниренбергом и Г. Кора-ной в начале 1960-х годов. По мере накопления информации становилось ясным, что процесс синтеза аминокислотной последовательности по триплетному коду мРНК чрезвычайно сложен. Этот процесс назвали трансляцией (от англ. translation — перевод). В общем виде он описан в приложении. Информационная РНК выходит из ядра в цитоплазму, где она транслируется в соответствующую последовательность аминокислот (белок). Она напоминает компьютерную ленту, подающуюся через устройство, которое считывает по три основания одновременно. Каждый триплет оснований определяет одну аминокислоту. «Читающее устройство» клетки называется рибосомой — это молекулярная органелла, состоящая из РНК и белков. Рибосома транслирует (переводит) мРНК в белковую последовательность — линейную цепочку аминокислот. Функциональным белком эта цепочка становится только после того, как примет определенную трехмерную устойчивую форму.


Рис. 2.5. ДНК, РНК и белки имеют трехмерную структуру. На уровне генетической (нуклеотидной) и белковой (аминокислотной) информации часто удобно рассматривать линейные последовательности (слева); на уровне функции в клетке все эти молекулы имеют сложную трехмерную структуру.

А.Двухцепочечная ДНК — это правозакрученная спираль. Однако существует и более сложная укладка, особенно в высших клетках, позволяющая компактно упаковывать хромосомы внутри ядра. В зависимости от стадии клеточного цикла, спирали образуют комплексы с разнообразными белками, многие из которых определяют, какие гены будут транскрибироваться в мРНК.

Б.Одноцепочечные молекулы РНК могут складываться в сложные структуры с локальными спариваниями оснований комплементарных последовательностей. Эта вторичная структура особенно важна для функционирования транспортных и рибосомных РНК.

В. Аминокислотные последовательности белка принимают сложную пространственную структуру.

 

Генетический код, насколько известно до сих пор, универсален для всех живьк организмов на Земле: от мельчайших вирусов и бактерий до растений и животных. В ходе эволюции жизни на Земле около 3—4 млрд. лет назад этот код был отобран как оптимальный механизм переноса информации, приводящий к образованию белка, и с тех пор ни разу не был ни изменен, ни заменен. В противоположность этому современные компьютерные программы постоянно обновляются и заменяются. Очень интересны рассуждения Лесли Оргела (Orgel) и Фрэн-сиса Крика о возникновении генетического кода, опубликованные примерно 25 лет назад. Они полагают, что сложный молекулярный аппарат, требующийся для транслирования РНК в белок, мог быть занесен на Землю живыми организмами (бактериями) откуда-то из Вселенной — или кометами, или космическим кораблем из сверхразумной цивилизации. Варианты этой идеи отстаивают и астрофизики Фред Хойли (Hoyle) и Чандра Викрамасинг (Wickramasihghe) в книгах Life Cloud (Облако жизни) и Our Place in the Cosmos (Наше место во Вселенной) (рис. 1.4).


Рис. 2.6. Наследование изменении в последовательности оснований ДНК. Репликация ДНК — это процесс копирования. Несмотря на высокую точность этого процесса иногда все-таки происходят замены, вставки или потери оснований. Такие ошибки, например замена одного основания, редкие события. Их частота составляет примерно 1 на миллиард реплицированных оснований (см. рис. 5.2). Традиционно последовательность оснований ДНК представляют цепью 5'-3' (она имеет ту же ориентацию, что и мРНК, которая никогда не служит матрицей для синтеза мРНК).

А.В верхнем примере восьмое основание G заменено на А в этом же положении. Если эта замена происходит в участке гена, кодирующем аминокислоты, это может привести к появлению в ходе трансляции другой аминокислоты в белке или к преждевременному окончанию (терминации) синтеза белка (т. е., эта замена может привести к появлению стоп-кодона ТАА, TAG или TGA).

Б. Замена одного основания — простейший тип мутации; более сложные мутации могут приводить к потере или вставке одного или нескольких оснований. Если вставки или потери происходят в нетрэчскри-бируемых или фланкирующих участках, это может не привести к серьезным генетическим последствиям. Однако если они происходят в участке, кодирующем аминокислоты, последствия обычно летальны, так как последовательность аминокислот в белке будет совершенно другой, покольку вставка или потеря оснований изменяют рамку считывания кодонов. Чаще всего, изменение рамки считывания кодонов (этот тип мутаций называется «сдвиг рамки») приводит к появлению стоп-кодона, а именно ТАА, TAG или TGA, которые преждевременно останавливают синтез белка.

 

Где бы ни возник генетический код, он стал основным кодом жизни на Земле. Он привел к развитию чрезвычайно сложных и разнообразных биологических форм, оставаясь неизменным для всех организмов.

Когда мы клонируем какой-нибудь ген (скажем, ген инсулина человека), мы реплицируем (размножаем) его в бактериальных клетках и, таким образом, производим большое количество инсулин-специфической ДНК. Это говорит о том, что аппарат репликации ДНК бактерий обрабатывает ДНК-последовательность человека так же, как и бактериальную. Если мы хотим получить большое количество белка инсулина для лечения диабета, мы «экспрессируем» клонированный ген человека в бактерии. То есть, мы заставляем бактерию производить человеческий инсулин. И бактерия создает тот же самый инсулин, с той же последовательностью аминокислот, что и клетка человека. Это означает, что генетический код прочитывается одинаково и в бактериальной, и в человеческой клетках, а разошлись они в ходе эволюции, возможно, 3,6 млрд. лет назад.

Итак, гены в хромосомах представлены двухцепочечной ДНК. По мере роста клетка производит копию каждой цепи ДНК, и образуются две двухцепочечные спирали. В каждую из двух новых дочерних клеток, образующихся в результате деления, попадает по одной новой молекуле ДНК. Для роста и выполнения своих функций в дифференцированных тканях многоклеточного организма клетки нуждаются в тысячах различных белков, которые объединяются в структуры, которые мы называем «мультимолекулярными машинами». Такие объединения белков (и РНК) координируют и проводят все химические реакции в клетке, которые необходимы ей для поддержания жизни, роста и развития. Генетическая информация, зашифрованная в линейной последовательности оснований ДНК, определяет (через РНК) весь набор белков, в которых нуждаются различные клетки. Информационные молекулы продуцируют практически бесконечное разнообразие белков — с разными последовательностями аминокислот, структурой и функциями, — которое дало начало удивительному разнообразию и великолепию форм жизни на Земле.

Хотя мы говорим о линейных последовательностях ДНК, РНК и белка, надо помнить, что все эти информационные и функциональные полимеры имеют трехмерную структуру. Так, двухцепочечная ДНК — это правозакрученная спираль (рис. 2.5, А). Одноцепочечная РНК способна формировать сложную структуру за счет спаривания соседних комплементарных последовательностей (рис. 2.5, Б). Цепочка аминокислот в белке также складывается в характерную трехмерную форму (рис 2.5, В). Следовательно, на уровне генетической информации нам достаточно думать в терминах линейных последовательностей, но на функциональном уровне жизнь протекает в трехмерном пространстве.

Таким образом, во многих отношениях клетки и многоклеточные организмы могут рассматриваться как самопрограмми-руюшиеся многоцелевые информационные системы, способные изменяться во времени. Допустим, что в ДНК-последовательности 5'—AGCTAT—3' третье основание С заменено на Т; тогда последовательность станет другой, и все ее потомки также будут другими. Иными словами, мутантная (измененная) последовательность передается по наследству всем дочерним молекулам (рис. 2.6). Поэтому на молекулярном уровне дарвиновский отбор можно представить как отбор наиболее приспособленных последовательностей. Самые убедительные доказательства естественного отбора были получены в молекулярно-генетических исследованиях.

<<< Назад
Вперед >>>

Генерация: 6.394. Запросов К БД/Cache: 3 / 1
Вверх Вниз