Книга: Разведка далеких планет

Открытия экзопланет

<<< Назад
Вперед >>>

Открытия экзопланет

Астрометрический поиск

Исторически первые попытки обнаружить экзопланеты связаны с наблюдениями за положением близких звезд. В 1916 г. американский астроном Эдуард Барнард (1857–1923) обнаружил, что тусклая красная звезда в созвездии Змееносец быстро перемещается по небу относительно других звезд – на 10? в год. Позже астрономы назвали ее Летящей звездой Барнарда. Хотя все звезды хаотически перемещаются в пространстве со скоростями 20–50 км/с, при наблюдении с большого расстояния эти перемещения остаются практически незаметными. Звезда Барнарда – весьма заурядное светило, поэтому возникло подозрение, что причиной ее наблюдаемого «полета» служит не особенно большая скорость, а просто необычная близость к нам. Действительно, звезда Барнарда оказалась на втором месте от Солнца после системы а Кентавра.

Масса звезды Барнарда почти в 7 раз меньше массы Солнца, значит, влияние на нее соседей-планет (если они есть) должно быть весьма заметным. Более полувека, начиная с 1938 г., изучал движение этой звезды американский астроном Питер ван де Камп (1901–1995). Он измерил ее положение на тысячах фотопластинок и заявил, что у звезды обнаруживается волнообразная траектория с амплитудой покачиваний около 0,02?, а значит, вокруг нее обращается невидимый спутник. Из расчетов П. ван де Кампа следовало, что масса спутника чуть больше массы Юпитера, а радиус его орбиты 4,4 а. е. В начале 1960-х гг. это сообщение облетело весь мир и получило широкий резонанс. Ведь это было первое десятилетие практической космонавтики и поиска внеземных цивилизаций, поэтому энтузиазм людей в отношении новых открытий в космосе был чрезвычайно велик.

К исследованию звезды Барнарда подключились и другие астрономы. Некоторые результаты говорили в пользу гипотезы ван де Кампа. Например, в 1972 г. на конференции по происхождению Солнечной системы в Ницце (Франция) теоретики Д. Блэк и Г. Саффолк обсуждали планетную систему звезды Барнарда, не ставя под сомнение ее существование. Перед вами фрагмент их выступления.

«Рассматриваемая планетная система принадлежит звезде Барнарда, красному карлику спектрального класса dM 5. Ван де Камп и другие астрономы вели тщательные наблюдения звезды Барнарда с 1916 по 1919 гг. и затем с 1938 г. по настоящее время. Согласно предложенной ван де Кампом динамической интерпретации отклонений собственного движения звезды Барнарда от прямолинейного, они обусловлены спутником с массой, близкой к массе Юпитера, обращающимся вокруг звезды по эксцентрической орбите. Период обращения равен 24 годам. В 1969 г. ван де Камп уточнил свои ранние результаты и предложил два новых варианта интерпретации. Первый аналогичен прежнему, но планета имеет орбиту с большим эксцентриситетом и больший период обращения. Во втором варианте предполагается существование двух планет на почти компланарных круговых орбитах. Направления их обращения совпадают. Ван де Камп нашел, что при массах планет, равных 1,1 и 0,8 массы Юпитера, и периодах 26 и 12 лет соответственно двухпланетная модель согласуется с наблюдательными данными не хуже, но и не лучше, чем однопланетная. Следует отметить, что ван де Камп искал лишь компланарные решения (т. е. лежащие в одной плоскости. – В. С.) и соответственно ограничил диапазон возможных параметров орбит.

Наш анализ движения звезды Барнарда показал, что для объяснения данных наблюдений необходимы по меньшей мере две планеты и что имеются убедительные свидетельства существования в системе трех массивных (М~1030 г) планет. Приближенные значения их масс 1,2; 0,6 и 0,8 массы Юпитера, а периоды обращения 26, 12 и 7 лет соответственно.

В настоящее время невозможно сделать окончательные выводы относительно параметров орбит или числа планет. В частности, если отклонение собственных движений от прямолинейности служит основным ориентиром при поисках планетных систем, то это исключает обнаружение планет „земного типа“. Несмотря на неоднозначность интерпретации данной планетной системы, имеющаяся информация требует, чтобы планеты в системе звезды Барнарда находились на некомпланарных орбитах; относительное наклонение орбит должно быть большим (i ? 40°). Именно эта особенность делает систему звезды Барнарда столь интересной».

Но не все астрономы согласились с выводами Питера ван де Кампа и его последователей. Продолжая наблюдения и увеличивая точность измерений, Дж. Гейтвуд с коллегами выяснили к 1973 г., что звезда Барнарда движется ровно, без колебаний, а значит, массивных планет в качестве спутников не имеет. Однако эти же астрометрические работы принесли в 1996 г. новую находку: были замечены зигзаги в движении шестой от Солнца звезды Лаланд 21185, удаленной от Солнца на 2,5 пк. (На ее волнообразное движение указывал еще П. ван де Камп в 1951 г.) По мнению Гейтвуда, вокруг этой звезды обращаются две планеты: одна с периодом 30 лет (масса 1,6 Mj, радиус орбиты 10 а. е.) и вторая с периодом 6 лет (0,9 Mj, 2,5 а. е.). Правда, это открытие до сих пор не только не подтверждено, но и вызывает все большие сомнения.

Первое надежное астрометрическое обнаружение экзопланеты состоялось лишь в 2009 г. После 12 лет наблюдений с помощью 5-метрового Паломарского телескопа за 30 звездами американские астрономы Стивен Правдо и Стюарт Шаклан из Лаборатории реактивного движения (JPL, NASA) обнаружили планету у крохотной переменной звезды «ван Бисбрук 10» (VB 10) в двойной системе Глизе 752 (GJ 752). Звезда VB 10 – одна из самых маленьких в Галактике: это красный карлик спектрального класса М8, уступающий Солнцу в 12 раз по массе и в 10 раз по диаметру. А светимость этой звезды столь мала, что если заменить ею наше Солнце, то днем Земля была бы освещена как сейчас лунной ночью. Именно благодаря малой массе звезды планета VB 10Ь смогла «раскачать» ее до заметной амплитуды: с периодом около 272 суток положение звезды на небе колеблется на 0,006? (тот факт, что это удалось измерить, – настоящий триумф наземной астрометрии). Сама планета-гигант обращается по орбите с большой полуосью 0,36 а. е. (как у Меркурия) и имеет массу 6,4 Mj, т. е. она легче своей звезды всего в 14 раз, а по размеру даже не уступает ей.

Планеты у нейтронных звезд

В конце 1980-х несколько групп астрономов в разных странах создали высокоточные оптические спектрометры и начали систематические измерения скоростей ближайших к Солнцу звезд. Эта работа специально была нацелена на поиск экзопланет и через несколько лет действительно увенчалась успехом (см. ниже). Но первыми открыли экзопланету не оптики, а радиоастрономы, причем не одну, а сразу целую планетную систему. Произошло это в ходе исследования радиопульсаров – быстро вращающихся нейтронных звезд, излучающих строго периодические радиоимпульсы. Поскольку пульсары – чрезвычайно стабильные источники, радиоастрономы могут применять к ним метод хронометража и выявлять таким образом их движение со скоростью порядка 1 сантиметра в секунду (!), а значит, обнаруживать рядом с ними планеты с массами в сотни раз меньше, чем у Юпитера.

Первое сообщение в журнале «Nature» об открытии планетной системы вокруг пульсара PSR1829-10 (обозначался также PSR1828-11 и PSR В1828-10, современное обозначение PSR J1830-10) сделала в середине 1991 г. группа радиоастрономов Манчестерского университета (М. Бэйлес, А. Лин и С. Шемар), наблюдающих на радиотелескопе в Джодрелл-Бэнк. Они объявили, что вокруг нейтронной звезды, удаленной от Солнца на 3,6 кпк, обращается планета в 10 раз массивнее Земли по круговой орбите с периодом 6 месяцев. В 1994 г. в неопубликованном сообщении авторы уточнили, что планет три: с массами 3, 12 и 8 земных и периодами соответственно 8, 16 и 33 месяца. Однако до сих пор это открытие не подтверждено независимыми исследованиями и поэтому остается сомнительным.



Рис. 6.6. Планетная система радиопульсара PSR 1257+12 в сравнении с внутренней областью Солнечной системы, показанной в том же масштабе расстояний. Цифрами обозначены массы планет в МЕ. Приблизительно (но в ином масштабе) выдержан и относительный размер планет.

Первое подтвердившееся открытие внесолнечной планеты сделал польский радиоастроном Алекс Вольцжан (A. Wolszczan), который с помощью 305-метровой антенны в Аресибо изучал радиопульсар PSR 1257+12, удаленный примерно на 300 пк от Солнца и посылающий импульсы через каждые 6,2 мс. В 1991 г. ученый заметил периодическое изменение частоты прихода импульсов. Его американский коллега Дейл Фрейл подтвердил это открытие наблюдениями на другом радиотелескопе. К 1993 г. выявилось присутствие рядом с пульсаром PSR 1257+12 трех планет с массами 0,02; 4,1 и 3,8 массы Земли, обращающихся с периодами 25, 67 и 98 сут. В 1996 г. появилось сообщение о присутствии в этой системе четвертой планеты с массой Сатурна и периодом около 170 лет, но оно осталось неподтвержденным.

Легкость, с которой планеты были найдены у первого пульсара, вдохновила радиоастрономов на анализ сигналов и других пульсаров (их сейчас открыто около 2000). Но поиск оказался почти безрезультатным: лишь еще у одного далекого пульсара (PSR В1620-26) обнаружилась планета-гигант в 2,5 раза массивнее Юпитера. До недавнего времени планетная система пульсара PSR 1257+12 демонстрировала нам единственный пример планет типа Земли за пределами Солнечной системы.

Считается весьма странным, что вообще рядом с нейтронной звездой обнаружились маломассивные спутники. Рождение нейтронной звезды должно сопровождаться взрывом сверхновой. В момент взрыва звезда сбрасывает оболочку, вместе с которой теряет большую часть своей массы. Поэтому ее остаток, нейтронная звезда-пульсар, не может своим притяжением удержать планеты, которые до взрыва быстро обращались вокруг массивной звезды. Возможно, обнаруженные у пульсара планеты сформировались уже после взрыва сверхновой, но из чего и как – не ясно. Пока планетные системы нейтронных звезд по причине их непонятного происхождения считают чем-то «неполноценным».

Успех доплеровского метода: планеты у нормальных звезд

Первую «настоящую» экзопланету обнаружили в 1995 г. астрономы Женевской обсерватории Мишель Майор (М. Mayor) и Дидье Келоз (D. Queloz), построившие оптический спектрометр, определяющий доплеровское смещение линий с точностью до 13 м/с. Любопытно, что американские астрономы под руководством Джеффри Марси (G. Магсу) создали подобный прибор раньше и еще в 1987 г. приступили к систематическому измерению скоростей нескольких сотен звезд; но им не повезло сделать открытие первыми. В 1994 г. Майор и Келоз приступили к измерению скоростей 142 звезд из числа ближайших к нам и по своим характеристикам похожих на Солнце. Довольно быстро они обнаружили «покачивания» звезды 51 в созвездии Пегас (51 Peg), удаленной от Солнца на 15 пк. Колебания этой звезды происходят с периодом 4,23 сут. и, как заключили астрономы, вызваны влиянием планеты с массой 0,47 Mj.

Это удивительное соседство озадачило ученых: совсем рядом со звездой, как две капли воды похожей на Солнце, мчится планета-гигант, обегая ее всего за четыре дня; расстояние между ними в 20 раз меньше, чем от Земли до Солнца. Не сразу поверили астрономы в это открытие. Ведь обнаруженная планета-гигант из-за ее близости к звезде должна быть нагрета до 1000 К. «Горячий юпитер»? Такого сочетания никто не ожидал. Быть может, за покачивания звезды была принята пульсация ее атмосферы? Однако дальнейшие наблюдения подтвердили открытие планеты у звезды 51 Peg. Для нее даже было предложено имя – Эпикур, но оно пока не получило признания. Затем обнаружились и другие системы, в которых планета-гигант обращается очень близко к своей звезде.

«Затмения» звезд планетами

Метод прохождений также доказал свою эффективность. Сейчас фотометрические наблюдения за звездами ведутся как с борта космических обсерваторий, так и с Земли. Все современные фотометрические инструменты имеют широкое поле зрения. Измеряя одновременно блеск миллионов звезд, астрономы существенно увеличивают свой шанс обнаружить прохождение планеты по диску звезды. При этом, как правило, обнаруживаются планеты, часто демонстрирующие «затмение» звезды, т. е. имеющие короткий орбитальный период, а значит – компактную орбиту.


Рис. 6.7. Восьмиобъективный роботизированный фотометрический комплекс проекта WASP (Wide Angle Search for Planets). Такие инструменты установлены на о. Ла-Пальма (Канарские острова) и в Южно-африканской астрономической обсерватории близ Сазерленда. Это совместный проект нескольких британских университетов и испанского Астрофизического института на Канарских островах. Фото с сайта http:// www.superwasp.org.

Термин «горячий юпитер» стал настолько привычным, что никого уже особенно не удивило открытие в 2009 г. планеты WASP-18b, имеющей массу 10 Mj и обращающейся по почти круговой орбите на расстоянии 0,02 а. е. от своей звезды. Орбитальный период этой планеты составляет всего 23 часа! Учитывая, что звезда WASP-18 (HD 10069) имеет спектральный класс F9 и обладает большей светимостью, чем Солнце, температура поверхности планеты должна достигать 3800 К: это уже не просто «горячий», а «раскаленный юпитер». Из-за близости к звезде и своей большой массы планета вызывает сильные приливные возмущения на поверхности звезды, которые, в свою очередь, тормозят планету и в будущем приведут к ее падению на звезду.

Фотографии экзопланет

Несмотря на огромные трудности, астрономам все же удалось сфотографировать экзопланеты уже имеющимися средствами! Правда, средства эти были лучшими из лучших: орбитальный телескоп «Хаббл» и крупнейшие наземные инструменты (8?10-метровые телескопы «Кек», «Джемини» и «Очень большой телескоп»). Среди технических ухищрений – заслонка, отсекающая свет звезды, и светофильтры, пропускающие в основном инфракрасное излучение планеты в диапазоне длин волн 2–4 мкм, что соответствует температуре примерно 1000 К (в этом диапазоне планета выглядит более контрастно по отношению к звезде).

Начиная с 2004 г. получено несколько изображений экзопланет. Каталог экзопланет, изображения которых получены[6], содержит уже 11 планет в 9 системах. Например, в протопланетном диске, окружающем молодую звезду ? Живописца, сфотографирована планета, весьма похожая на Юпитер, только массивнее. Ситуация там напоминает молодую Солнечную систему, в которой новорожденный Юпитер активно влиял на формирование в околосолнечном диске остальных планет. Наблюдать этот процесс «вживую» – мечта всех специалистов по планетной космогонии.

В конце 2008 г. важные открытия почти одновременно сделали две группы американских и канадских ученых. Космическим телескопом «Хаббл» удалось сфотографировать планету на внутреннем крае пылевого диска, окружающего яркую звезду Фомальгаут (а Южной Рыбы). Хотя эта звезда светит почти в 20 раз мощнее Солнца, она не могла бы столь сильно осветить свою планету, чтобы сделать ее заметной с Земли. Ведь обнаруженная планета находится от Фомальгаута в 115 раз дальше, чем Земля от Солнца. Поэтому астрономы предполагают, что планета окружена гигантским отражающим свет кольцом, намного превосходящим кольца Сатурна. В нем, по-видимому, формируются спутники этой планеты, как в эпоху юности Солнечной системы формировались спутники планет-гигантов.



Рис. 6.8. Планета 2М1207 b (слева). Это первое изображение планеты, находящейся за пределами Солнечной системы. Она имеет массу от 3 до 10 Mj и обращается вокруг коричневого карлика 2MASSWJ1207334-393254 массой 25 Mj. Снимок получен в ближнем ИК-диапазоне с использованием адаптивной оптики на 8,2-метровом телескопе VLT Европейской южной обсерватории (Чили) в 2004 г.


Рис. 6.9. Первое изображение планеты (вверху слева) вблизи нормальной звезды солнечного типа. Эта молодая звезда 1RXS J160929.1-210524 спектрального класса K7V удалена от нас на 150 пк, имеет массу 0,85 солнечной и температуру поверхности 4060 К. А планета в 8 раз массивнее Юпитера, и температура ее поверхности 1800 К (поэтому она светится сама). Возраст звезды и планеты – вероятно, около 5 млн лет. Расстояние между ними в проекции – около 330 а. е.

Фото получено в сентябре 2008 г. в ближнем ИК-диапазоне телескопом Джемини-Север (обсерватория Мауна-Кеа, Гавайи) с использованием адаптивной оптики.

Не менее любопытна и фотография сразу трех планет у звезды HR 8799 в созвездии Пегас, полученная группой канадских астрономов под руководством К. Маруа (с. 9 цветной вкладки). Эта система удалена от нас примерно на 40 пк. Каждая из ее планет почти на порядок массивнее Юпитера, но движутся они примерно на тех же расстояниях от своей звезды, что и наши планеты-гиганты. (В проекции на небо эти расстояния составляют 24, 38 и 68 а. е.) Будет очень странно, если на месте Венеры, Земли и Марса в той системе не обнаружатся землеподобные планеты. Но пока это за пределами технических возможностей.


Рис. 6.9. Планета Фомальгаута. В мощном пылевом диске вокруг звезды Фомальгаут телескоп «Хаббл» сфотографировал планету (в белом квадрате). Светлый кружок в центре снимка обозначает положение Фомальгаута (сама звезда закрыта экраном), эллипс, показанный для масштаба, имеет размер орбиты Нептуна. За два года наблюдений экзопланета сместилась очень незначительно, так как период ее обращения по орбите – около 900 лет. Фото: Kalas и др., http://arxiv.org/abs/0811.1994.

Получение прямых снимков экзопланет – важнейший этап в их изучении. Во-первых, этим окончательно подтверждается их существование. Во-вторых, открыт путь к изучению свойств этих планет: их размеров, температуры, плотности, характеристик поверхности. И самое волнующее – не за горами расшифровка спектров этих планет, а значит, выяснение газового состава их атмосферы. О такой возможности давно мечтают экзобиологи.

<<< Назад
Вперед >>>

Генерация: 6.233. Запросов К БД/Cache: 3 / 1
Вверх Вниз