Книга: Происхождение жизни. От туманности до клетки

Орбитальные резонансы

<<< Назад
Вперед >>>

Орбитальные резонансы

Есть и другая причина, по которой движение планет немного отклоняется от описанного в законах Кеплера. Это гравитационное взаимодействие между планетами. Хотя оно гораздо слабее, чем их притяжение Солнцем, за миллионы лет его влияние может накапливаться и сильно изменять орбиты. Притяжение двух планет друг к другу максимально в период противостояния – когда расстояние между ними минимально. Поэтому влияние разных планет на движение друг друга вокруг Солнца зависит от отношения их периодов обращения. Если эти периоды не образуют простого соотношения типа 1:2, 2:3 или 2:5, то противостояния происходят в разных участках орбит без строгой закономерности, а изменения орбит на больших промежутках времени стремятся к нулю. Если периоды обращения планет относятся как небольшие целые числа, то говорят, что их орбиты находятся в резонансе. В этом случае противостояния происходят в одних и тех же местах орбиты, небольшие изменения орбит постепенно накапливаются, и со временем орбиты могут сильно изменяться[1].

Последствия орбитального резонанса зависят от нескольких факторов: соотношения масс тел, отношения их периодов обращения и эксцентриситетов орбит. Такие резонансы, как 1:2, 1:3, 5:2, 3:7, как правило, приводят к быстрому изменению орбит. Если массы тел сильно отличаются (например, Юпитер и астероид), то орбита астероида становится сильно вытянутой, и он выбрасывается из Солнечной системы. Резонансы 2:3, 3:4, 4:5, напротив, могут стабилизировать орбиты. Так, астероиды группы Хильды находятся в устойчивом резонансе 2:3 с Юпитером, а Плутон – с Нептуном.

Особенно быстрые изменения происходят при резонансе 1:2 – тогда планеты встречаются в одной и той же части орбиты, и их притяжение вытягивает их орбиты в эллипсы. В таком орбитальном резонансе находятся спутники Юпитера, Ио, Европа и Ганимед, их периоды обращения относятся как 1:2:4. Однако приливные силы противостоят вытягиванию их орбит, поэтому конечным результатом борьбы орбитального резонанса с приливом оказывается рассеяние кинетической энергии орбитального обращения спутников в нагрев их недр и постепенное приближение к Юпитеру. Благодаря такому источнику энергии на Ио происходит самый активный вулканизм в Солнечной системе, фонтаны расплавленной серы бьют на сотню километров от ее поверхности.

Другое следствие орбитальных резонансов – так называемые пробелы Кирквуда в поясе астероидов. Разные астероиды имеют самые разные периоды обращения, но таких астероидов, которые бы находились близко к резонансам 2:1, 3:1, 5:2 и 7:3 с Юпитером, нет. Малые тела, которые могли быть на этих орбитах, неизбежно перешли на эллиптические орбиты, близко подходящие к Юпитеру, и были выброшены им из пояса астероидов.

Планеты Солнечной системы в настоящее время не образуют орбитальных резонансов между собой. Астрономы древности приложили много усилий, чтобы найти простую и красивую математическую закономерность в периодах обращения планет вокруг Солнца или в радиусах их орбит, но безуспешно. Теперь мы знаем, что Солнечная система с простыми соотношениями между периодами обращения планет оказывается неустойчива. На языке античной астрономии можно сказать, что музыка сфер способна звучать вечно, только если в ней нет гармоничных созвучий, иначе она начнет быстро меняться. В древней истории Солнечной системы, по-видимому, были периоды орбитальных резонансов между планетами, и они оставили свои следы в ее современном устройстве.

<<< Назад
Вперед >>>

Генерация: 5.607. Запросов К БД/Cache: 3 / 1
Вверх Вниз