Книга: Разум побеждает: Рассказывают ученые
Б. М. Кедров, академик О закономерностях развития естествознания
<<< Назад Вместо заключения |
Вперед >>> НАШИ АВТОРЫ |
Б. М. Кедров, академик
О закономерностях развития естествознания
В развитии естествознания можно отметить одну важную закономерность: оно движется вперед не сплошным ровным фронтом, а выдвигая вперед попеременно то одну, то другую из своих отраслей в качестве ведущей, влияющей существенным образом на другие его отрасли и на все его развитие в целом. Такая отрасль науки, выдвинувшаяся вперед в данный период и определяющая собой развитие всех остальных ее отраслей, становится на время лидером всего научного прогресса. Она накладывает свой отпечаток на другие связанные с нею отрасли науки, сообщает им свои масштабы и критерии, передает выработанные ею понятия — словом, ведет их за собой и прокладывает путь для их дальнейшего развития.
Опыт истории естествознания показывает, что, после того как данная отрасль научного знания выполнит функцию лидера всего научного движения, она уступает ее целому комплексу, компактной группе отраслей науки. В итоге одиночный лидер сменяется групповым. По-видимому, роль одиночного лидера как раз и состоит в том, чтобы проложить путь для дальнейшего движения вперед всему естествознанию в целом.
Однако через какое-то время наступает такой момент, когда ситуация повторяется: снова возникает необходимость в том, чтобы одна какая-то вполне определенная отрасль науки выдвинулась резко вперед в качестве одиночного лидера и проложила бы путь для дальнейшего движения всем остальным отраслям естествознания. По выполнении этой ее функции вновь происходит смена одиночного лидера групповым, но уже на гораздо более высокой ступени научного развития.
Возникновение научного лидера и смена одиночного лидера групповым, а группового — снова одиночным придают своеобразный пульсирующий характер процессу развития естествознания. Это первая черта, свойственная процессу научного прогресса.
Вторая черта состоит в том, что процесс развития науки неуклонно ускоряется, а значит, убыстряется и переход ее с одной ступени на другую, более высокую. Соответственно этому быстрее сменяются и лидеры ее. Это означает, что время лидерствования одной отрасли науки или группы отраслей становится все короче, что все быстрее происходит переход от очередного одиночного лидера к сменяющему его групповому лидеру, а потом — к новому одиночному.
Третья черта процесса развития науки заключается в том, что выдвижение одиночного лидера происходит не случайным образом, а обусловливается двумя взаимосвязанными и взаимодействующими факторами: потребностями техники и вообще материальной общественно-исторической практики людей, во-первых, и внутренней логикой развития научного познания, потребностями развития самого естествознания, во-вторых. Именно совпадение тех и других запросов практики и самой науки — определяет, какая именно отрасль науки и в какой именно исторический период становится узловой, ведущей, обусловливающей своим состоянием и развитием движение всего естествознания, всех его отраслей на данный отрезок времени.
О запросах и потребностях практики я скажу дальше. Сейчас же хочется обратить внимание на тот факт, что в процессе познания всегда возникает задача выяснить природу более сложных явлений, связанных с более развитыми объектами природы, стоящими на более высоких ступенях ее развития, исходя из более простых явлений, связанных с менее сложными, менее развитыми объектами природы, стоящими на более низких ступенях ее развития. В идеале познание человека стремится найти самые простые, самые элементарные (при данных условиях, для данного уровня знаний) формы внешнего мира (природы), из которых можно было бы вывести и с помощью которых можно было бы объяснить (понять) остальные явления природы.
В пределах каждой отрасли знания существуют свои наиболее простые, элементарные формы изучаемого предмета, которые в силу своего абстрактного характера выступают как своего рода «клеточки» этого предмета. Если такая «клеточка» найдена, то уже можно ставить задачу раскрыть, как из нее в ходе последующего движения самого изучаемого предмета (и соответственно тех понятий, в которых этот предмет отображается) возникают более сложные его формы.
Именно так, по сути дела, ставится задача и по отношению ко всему естествознанию в целом: для того чтобы объяснить и понять, — а значит, изучить, исследовать — объекты природы, стоящие на различных уровнях сложности и развития, необходимо отыскать то, что лежит в их основе. Тогда изучение этой основы будет способствовать общему прогрессу науки, а та ее отрасль, которая эту основу изучает, сделается на время лидером всего естествознания.
Для иллюстрации сказанного обратимся к истории естествознания, а после попытаемся наметить — разумеется, весьма осторожно и условно — некоторые возможные перспективы. При этом будем все время помнить, что три основные «вехи» времени тут органически и закономерно связаны между собой: настоящее есть закономерное продолжение прошлого, а будущее — столь же закономерное продолжение настоящего и прошлого. Отсюда — возможность прогнозирования, основанного на точном учете и обобщении того, что дала история науки и что дает анализ ее современного состояния.
Хорошо известно, что первым лидером только что возникшего в качестве самостоятельной науки естествознания стала механика. Ее выдвижение в XVII XVIII вв. в роли лидера всего естествознания, которому она придала механический характер, было строго закономерно. Оно вытекало из отмеченного выше совпадения обоих факторов научного движения — материального (потребности техники и производства) и идеального (внутренней логики самого научного познания).
Производственная практика и техника в то время опирались в первую очередь на широкое использование механического движения, способов его передачи (рычаги, блоки и т. д.), механических инструментов и таких сложных механических устройств, как, например, часы и мельница. Ручной труд, мускульная сила человека и животных, а также использование стихийных «сил» природы (вода, ветер) — все это делало необходимым, с точки зрения интересов техники и производства того времени, всестороннее изучение именно механических явлений, открытие их законов.
В XVII в. возникло стремление сводить более сложные формы движения обязательно к механическому, которое якобы исчерпывает их без остатка. Такой подход к явлениям природы, сведение качества к количеству назвали механицизмом. Механицизм явился неправомерной экстраполяцией тех несомненных успехов, которые принесла с собой механика в бытность свою лидером естествознания, причем отголоски его дошли до наших дней. Но за столь явное преувеличение ее собственных возможностей сама механика, разумеется, не несет ответственности, как не отвечает кибернетика за то, что в наши дни некоторые чересчур рьяные ее поклонники объявили ее способной заменить собой полностью даже самого человека с его умственной деятельностью.
Успехи механики в XVII–XVIII вв. были связаны с тем, что она изучала реальную сторону реальных процессов природы — а именно их механическую сторону — и давала в руки ученых способы и средства осуществлять такую задачу. Средневековая схоластика, провозгласившая учение о скрытых качествах, о всякого рода таинственных и неуловимых субстанциях, мешала изучать действительные вещи и их свойства, не давала возможности двигаться человеку вперед в познании природы. Механика впервые позволила не на словах, а на деле раскрывать и познавать реальные стороны реальных вещей. Этим все естественнонаучное знание впервые ставилось на научную основу, поскольку во всех объектах природы, как бы сложны они ни были, имеется механическая сторона и, следовательно, их движение включает в себя так или иначе механическое движение.
К началу XIX в. механика выполнила свою функцию первого одиночного лидера естествознания. Теперь, развивая полученный от нее мощный толчок, рванулись вперед прежде всего химия (атомистика Дальтона, 1803 г.) и биология (эволюционное учение Ламарка, 1809 г.), затем геология (Лайель), органическая химия (начиная с синтеза Велера, 1828 г.), электрохимия (Дэви, Петров, начало века; особенно Фарадей, 30-е годы). Во второй трети XIX в. совершаются три великих открытия в естествознании: создается клеточная теория (Шлейден и Шванн), формулируется закон сохранения и превращения энергии (Майер), появляется эволюционная теория в биологии (Дарвин). Естествознание утрачивает свой первоначальный «механический» характер. Его лидером становится теперь вся совокупность его главных отраслей, в первую очередь химия, физика и биология.
Под знаком этого группового лидера идет научное развитие и в последней трети XIX в., начиная с создания Бутлеровым теории химического строения органических соединений (1861 г.) и открытия Менделеевым периодического закона (1869 г.) и кончая открытиями в области биологии (Мендель, 1865 г.), физики (Максвелл, Герц и др.) и созданием физической химии.
Срок одиночного лидерствования механики можно считать равным 200 годам, срок же для сменившего ее в XIX в. группового лидера оказался вдвое меньше — около 100 лет. Это свидетельствует о том, что процесс научного движения за это время ускорился по меньшей мере вдвое.
Здесь нет возможности более подробно проследить взаимодействие обоего рода факторов при выдвижении вперед всего комплекса естественных наук в XIX в. Укажу лишь на то, что к концу века все явственнее стала назревать необходимость проникновения физики в глубь атома, который до тех пор оставался не преодоленным еще наукой нижним пределом разложения вещества.
В самом конце XIX в. в физике, а через нее и во всем естествознании началась «новейшая революция», как ее назвал В. И. Ленин. Суть ее состояла в том, что наука перешагнула порог, на котором она остановилась в XIX в., порог микромира. Открытия лучей Рентгена (1895 г.), радиоактивности (1896 г.), электрона (1897 г.) и радия (1898 г.) положили начало коренному перевороту во взглядах на материю и ее строение, на ее считавшиеся неделимыми (мельчайшие) частицы — атомы.
Все эти и последовавшие в начале XX в. новые открытия (теория квантов, измерение давления света, теория радиоактивного распада, теория относительности с законом неразрывной связи массы и энергии и другие вплоть до создания Н. Бором в 1913 г. модели атома) носили четко выраженный физический характер. Физика, точнее, атомная и субатомная физика сделалась на этот раз очередным одиночным лидером естествознания. Ее прогресс стал накладывать свой отпечаток на все другие отрасли науки: на химию (учение о химической связи и о химическом сродстве), на макрофизику, астрономию, геологию, биологию. Достаточно назвать только два физических метода, вошедшие в биологические исследования и вызвавшие здесь глубокий переворот, чтобы понять, что в первой половине XX в., особенно во второй его четверти, физика действительно стала лидером всего естествознания.
Речь идет о создании электронного микроскопа и о введении способа «меченых атомов» (радиоактивных изотопов). Оба этих физических метода позволили перевести биологические исследования с клеточного уровня, на котором они велись в XIX в., на субклеточный, а затем и на молекулярный, открывая тем самым пути для изучения самых тонких, интимных сторон процессов жизнедеятельности.
Выдвижение микрофизики (атомной и субатомной) в качестве очередного одиночного лидера было опять-таки продиктовано совпадением запросов обоих факторов развития науки — материального (практики) и идеального (логики развития самого познания). По сути дела, на рубеже XIX и XX вв. стали складываться предпосылки грядущей научно-технической революции. Первым проявлением ее было практическое освоение атомной энергии в начале 40-х годов нашего века. Для того чтобы решить такого рода задачу, необходимо было предварительное широкое (фронтальное) изучение вновь открытого явления природы (радиоактивности), а затем и вообще ядерных превращений. Физика взяла на себя выполнение этой задачи, в решении которой была кровно заинтересована практика, столкнувшаяся с фактором существования нового мощного источника энергии. Без помощи физики практика не могла даже и мечтать подойти к его использованию.
С другой стороны, к этому вела логика развития самого научного познания: после открытия периодического закона химических элементов и создания теории электролитической диссоциации с ее центральным понятием иона (электрозаряженного осколка молекулы) наука вплотную подошла к тому, чтобы от сущности одного порядка (менее глубокой), когда познавались атомы и молекулы, перейти к сущности следующего, более глубокого порядка, проникнуть в глубь атомов, в их внутренние сферы. Благодаря этому только и могла быть раскрыта физическая причина найденной Менделеевым периодичности свойств химических элементов. Атомная и субатомная (в том числе и в особенности ядерная) физика стала, таким образом, узловым пунктом, в котором сошлись, совпали запросы практики и логики развития науки.
Это была область простейших из известных дотоле видов материи. Так как все более сложные образования материи — макрофизические, химические, геологические, биологические — должны возникать генетически и состоять структурно из этих простейших, элементарных физических видов материи, то их понимание и объяснение на современном уровне могло быть достигнуто только путем их рассмотрения, исходя из соответствующих физических представлений. На новый лад в XX в. повторилась та же ситуация, какая сложилась в естествознании XVII и XVIII вв., когда механика претендовала на то, чтобы давать ключ к истолкованию и изучению всех более сложных явлений природы. Только на этот раз в качестве простейших форм движения материи выступили уже не макромеханические, а квантовомеханические и ядерно-физические.
Для решения задач практического освоения атомной энергии потребовались быстродействующие вычислительные устройства, так что зарождение ядерной энергетики, в свою очередь, стало стимулировать создание электронно-вычислительной техники. Отсюда выросла кибернетика. Сначала все это находилось лишь в зачаточной фазе, и только к концу 40-х годов нашего века произошли события, получившие наименование научно-технической революции, что было связано опять-таки с тем, что ранее существовавший и действовавший одиночный лидер в развитии естествознания — микрофизика сменился групповым. Это дало себя знать как быстрый рывок вперед целого комплекса естественных и технических наук, приведший к коренному перевороту в науке и технике.
Таким образом, развернулся второй цикл развития в истории естествознания. Причем на этот раз продолжительность лидерствования микрофизики оказалась в 2 раза меньше, чем продолжительность лидерствования предшествующего ей группового лидера.
Подобно тому как на плечах механики вырвались вперед и стали быстро развиваться химия, физика, геология и биология в XIX в., так и в настоящее время на плечах физики вырвались вперед и стали развиваться еще быстрее, чем это было в XIX в., связанные с физикой отрасли естествознания и техники наших дней. Это их развитие проходило и проходит буквально на наших глазах. Прежде всего следует назвать автоматизацию и кибернетизацию производственных процессов, а также многих других сторон жизни и деятельности современного человека. Эти новые отрасли науки и техники представляют собой главный стержень научно-технической революции, подобно тому как в XVIII в. изобретение рабочих машин (прядильного, токарного и других станков) представляло самую суть технической революции того времени.
Наряду с ними важнейшими направлениями научно-технической революции являются новая энергетика, макрохимия, космонавтика (ракетная техника), а также молекулярная биология и физико-химическая генетика, расшифровавшая структуру материальных носителей наследственности (ДНК). Несомненно, физика, по-прежнему один из важнейших участников общего научно-технического движения. Речь идет о микрофизике, ищущей решение задачи о закономерностях атомного ядра и элементарных частиц, о физике твердого тела (полупроводниковой технике), о квантовой электронике (лазерной технике) и т. д.
Особенность научно-технического прогресса в наше время состоит в том, что все его направления находятся в тесном и постоянном взаимодействии между собой, решительно влияют одно на другое, переходят одно в другое. Все они в конце концов были индуцированы успехами микрофизики первой половины XX в., но сегодня приобрели самостоятельное значение и развиваются своими собственными путями. Но хотя они уже вышли из-под опеки физики, они все еще продолжают опираться на ее достижения.
За последние двадцать с небольшим лет, прошедших с тех пор, как возникла и быстро развивается научно-техническая революция, выявились многие новые проблемы науки и практики, для решения которых важно не только отмеченное выше комплексное исследование и взаимодействие всех наук и отраслей техники, но и выдвижение вперед в качестве ведущей определенной отрасли естествознания, которая, по-видимому, в ближайшее время будет призвана стать во главе научно-технического движения его новым одиночным лидером.
Дело в том, что если учесть постоянное ускорение темпов развития науки и укорочение сроков лидерстрования, то надо признать, что в ближайшие годы должен будет, по предположению, истечь срок ныне действующего группового лидерствования кибернетики, макрохимии, космонавтики и других ведущих сейчас отраслей науки и техники. Если сокращение вдвое каждый раз этого срока — закономерное явление или по крайней мере устойчивое правило, то ныне лидерствующая группа наук вскоре сменится каким-то одиночным лидером. Все чаще в среде ученых раздаются голоса, что уже в самое ближайшее время лидером естествознания должна стать биология, а именно молекулярная биология и связанные с нею междисциплинарные отрасли науки, равно как и близкие к ней генетика и другие разделы науки о живом.
Прежде чем говорить о грядущем лидере естествознания, обращу внимание на то, что в появлении одиночных лидеров есть своя последовательность, своя логика. Сначала механика изучала простейшую сторону всякого макропроцесса, абстракцию от действительных вещей и явлений мира. Затем микрофизика имела дело с более конкретным предметом, самым элементарным из известных пока нам, но неизмеримо более сложным, чем предмет макромеханики. Очевидно, что если продолжить эту линию дальше, то можно сказать, что теперь могла встать задача найти простейшие формы у еще более сложного предмета природы — у живого тела. Предмет, изучаемый каждым из перечисленных одиночных лидеров, становится все сложнее и сложнее, но каждый раз выдвигается методологически одна и та же задача: найти простейшую форму этого предмета.
Для проверки обоснованности мнения о том, что вскоре надо ожидать выдвижения молекулярной биологии в качестве лидера всего естествознания, нужно обратиться, как это делалось и раньше, к выяснению того, совпадают ли оба фактора научного развития (материальный и идеальный) в этом именно пункте современного естествознания.
Научно-техническая революция за истекшие 20–25 лет развивалась столь бурными темпами, что внесла в жизнь человека и окружающую его среду весьма существенные изменения. Часть, если не большинство из них, нельзя было вовремя предвидеть. Чтобы изучить, как повлияют на потомство современного человека (ближайшее, а особенно более отдаленное) часто ничем не контролируемое загрязнение среды отходами производства, экспериментов и тому подобной деятельности химического, физического и биологического характера, необходимы строго продуманные и многолетние исследования и наблюдения. Между тем темпы развития самой научно-технической революции способны опередить любые исследования, внося все новые, ранее не предвиденные и не учтенные факторы, существенно меняющие, а подчас и резко ухудшающие экологические условия жизни человека.
Несомненно, что причина загрязнения окружающей нас среды кроется не в самой по себе научно-технической революции, а в ее неумелом, неумном, некультурном, одностороннем проведении, без обеспечения наперед возможности стопроцентной утилизации всех компонентов данного производственного процесса, а не выбрасывания их в качестве отходов (подчас очень ценных).
Экологические исследования требуют своего развития с расчетом на далекие сроки. Причем возникла необходимость исследовать широким фронтом жизнедеятельность организма самого человека, живущего в различных естественных и искусственных условиях. В особенности требуется резко повысить эффективность изучения таких современных тяжелых болезней, как злокачественные опухоли и сердечно-сосудистые заболевания. Здесь, по-видимому, необходимо такое же резкое и крутое изменение положения, какое произошло в 40-х годах с атомной энергетикой, а в 50–60-х годах — с космонавтикой. А это, в свою очередь, предполагает проведение исследования именно на молекулярном уровне» с тем чтобы, исходя из простейших форм живого, можно было затем перейти к более сложным системам.
Многие отрасли современной техники, со своей стороны, крайне заинтересованы в том, чтобы как можно шире использовать в производственных процессах биохимические методы, позволяющие строить технологию производства на более рациональной основе. Здесь опять-таки на первый план выдвигаются простейшие формы (микроорганизмы), с помощью которых осуществляются соответствующие процессы. В частности, все большее значение приобретает вопрос об искусственном биосинтезе в связи с общей проблемой изготовления синтетической пищи — сначала для животных, затем и для человека.
По сути, вся история химии была последовательной эмансипацией ее производств — освобождением их от зависимости от естественных условий, связанных с неуправляемостью, сезонностью и всякого рода колебаниями природы. В XX в., например, встала задача эмансипировать получение высокомолекулярных веществ, таких, как каучук, от естественных условий (когда каучуконосы возделываются на плантациях). И она была решена благодаря развитию химии полимеров. В настоящее время все настойчивее встает задача начать эмансипацию получения продуктов питания от сельского хозяйства, так как только промышленное производство может обеспечить достаточный объем этой продукции и бесперебойность ее получения. Речь идет о предстоящей биологизации производства и других сторон жизни современных людей. А это стимулирует особенно быстрыми темпами и в больших масштабах исследования явлений жизни вообще и на их молекулярном (простейшем) уровне в особенности.
Исключительный интерес с точки зрения практики представляет техническое освоение результатов длительной эволюции живого, в ходе которой природа стихийно находила оптимальные решения разнообразных задач, например, оптического характера (сложнейший глаз насекомого при минимальном его размере и т. п.). Новая область знаний — бионика, раскрывая структуру того или иного биологического органа как физического аппарата, стремится найти пути и средства перевода на рельсы технических устройств результатов биологической эволюции. При этом на первый план выдвигаются закономерности биологической эволюции, направленной, в частности, в сторону постоянного совершенствования живых существ и их органов.
Все это говорит о том, что, с одной стороны, логика самого научного развития ведет к тому, чтобы вслед за раскрытием простейших форм в неорганической природе (атомная и субатомная физика) приступить вплотную к раскрытию простейших форм органической природы (молекулярная биология), а с другой — именно сейчас в таком переходе от неживой природы к живой оказывается остро заинтересована и сама человеческая практика. Вот почему есть основания ожидать, что в ближайшее время действительно начнется выдвижение биологии (молекулярной биологии) в качестве очередного лидера естествознания — в ней, как в узловом пункте, сходятся в настоящее время оба рода факторов научного развития — материальный и идеальный.
Обозначим буквой I одиночного лидера, а буквой L группового лидера. В качестве цифрового индекса будем обозначать порядковый номер данного лидера. Так как первым лидером в естествознании была механика, то она обозначится как I1. Сменивший ее групповой лидер (химия, физика, биология) — как L2, a сменивший эту лидировавшую группу новый одиночный лидер (микрофизика) — как I3. Тогда ныне лидирующая группа естественных и технических наук (кибернетика, атомная энергетика, космонавтика и др.) обозначится как L4, а возможный ближайший одиночный лидер (молекулярная биология) — как I5. В таком случае, если со временем молекулярную биологию сменит еще новый групповой лидер, то он может быть условно обозначен как L6, а следующий за ним одиночный лидер — как I7.
В итоге составится следующий график, где числа, стоящие сверху, указывают продолжительность (в годах) каждого одиночного или группового лидирования начиная с XVII в. и кончая ближайшим будущим, которое изображено пунктирной линией и время продолжительности которого обозначено знаками вопроса.
Не будем пока заглядывать дальше, а попробуем вывести общую формулу, выражающую эмпирически устанавливаемую продолжительность для лидерствования n-го по счету лидера естествознания, учитывая при этом, что все нечетные лидеры — одиночные, а четные — групповые. Обозначив продолжительность во времени лидирования данной отрасли естествознания или данной группы его отраслей через ?tn, получаем: ?tn= 200/(2n–1).
Теперь обратим внимание на одну чрезвычайно важную особенность в изменении характера одиночного лидирования в развитии естествознания по мере достижения все более высоких и сложных ступеней познания: механика (I1), лидируя, почти не испытывала обратного воздействия со стороны ведомых ею отраслей естествознания по причине их крайне слабого развития в XVII и даже XVIII вв. Лидирование микрофизики (I3) в XX в. уже совершалось так, что смежные отрасли естествознания вступали с нею в определенное взаимодействие, образуя целый ряд межотраслевых научных направлений, стоящих на грани между ними и физикой. Например, между микрофизикой и химией возникла химическая физика (сверх уже ранее сложившейся физической химии); между физикой и биологией возникла биофизика и т. д.
В еще большей степени это коснется молекулярной биологии в случае, если она в ближайшее время станет лидером естествознания (I5). Судя по темпам развития науки, срок ее лидерствования может быть ограничен немногим более десятилетия. Но в течение этого и всего последующего времени проблемы молекулярной биологии по самой своей сути не могут быть обособлены хотя бы в малейшей степени от смежных с нею междисциплинарных отраслей естествознания, а через них и с основными его отраслями. Между ними и ею оказались перекинуты переходные мосты в виде биохимии, биоорганической химии (химии биополимеров), биофизики, биомеханики, биокибернетики.
В таком случае понятие одиночного лидера начинает сближаться с понятием группового лидера, и смена одного другим теряет свою прежнюю четкость и определенность. Вероятно, правильнее было бы тут говорить не об одиночном лидерствовании какой-то одной научной отрасли, а о выдвижении (в качестве узловой и ведущей) определенной проблемы. В изучении ее направляющую роль может играть какая-то одна определенная отрасль знания (например, молекулярная биология), но выступающая в теснейшем взаимодействии со всеми остальными связанными с нею отраслями знания.
Если это будет так, то изменится весь характер развития естествознания, который столь ясно проявлялся до сих пор на протяжении почти 400 лет, когда при ускоряющемся темпе его развития четко выделились последовательные циклы: от одиночного лидера к групповому (первый цикл), а от группового снова к одиночному и от него снова к групповому (второй цикл) и т. д. Но возможно, что с известными отклонениями от этой четкой линии в развитии науки в ближайшие годы (одно-полтора десятилетия) совершится и третий, еще более короткий и не столь резко выраженный цикл — одиночный лидер, переходящий в групповой, после чего в смене узловых, ведущих проблем наступит изменение отмеченного характера и выявится какая-то иная закономерность, которая сейчас уже дает себя знать в нарастании комплексности исследований и выражается, в частности, в союзе не только отраслей естествознания, но и естественных и общественных наук.
Если попытаться строить более долгосрочные прогнозы, то можно допустить, что вслед за молекулярной биологией (I5) должна будет выдвинуться вперед психологическая наука (I7) — в связи с возрастанием роли психологических факторов в развитии всего человечества, в частности в связи с колоссальными психическими перегрузками, вызванными лавинообразно нарастающим объемом информации («информационный взрыв»). Ее приходится перерабатывать и усваивать сегодня не только взрослым, но и детям. Но главное — то, что освобождение нашего мозга от монотонных (поддающихся формализации) операций выдвигает теперь задачу рационального и полного развития и использования творческих способностей человека, в том числе и его творческой деятельности в области науки, техники, литературы, искусства.
Однако выдвижение такого рода проблем в качестве ведущих может быть успешно решено только после того, как будут решены коренные биологические проблемы, касающиеся реальной охраны жизни и здоровья людей — строителей нового общества.
<<< Назад Вместо заключения |
Вперед >>> НАШИ АВТОРЫ |
- Б. М. Кедров, академик О закономерностях развития естествознания
- 1.2. Сценарии развития аварийных ситуаций и их хронология
- Об общих природных закономерностях
- 2. Этапы развития палеолитической культуры
- Надзор за надзирателями: кто присматривает за регуляцией развития
- 4.12. Сохранение многообразия видов как основа устойчивого развития биосферы
- 33. Биотехнология: достижения и перспективы развития
- 7.3. Разнообразие экосистем (биогеоценозов). Саморазвитие и смена экосистем. Выявление причин устойчивости и смены экоси...
- 1. Краткая история развития биологии
- Возникновение биосферы и главные черты ее развития
- 2.2. Клетка – единица строения, жизнедеятельности, роста и развития организмов. Многообразие клеток. Сравнительная харак...
- 3.9. Биотехнология, клеточная и генная инженерия, клонирование. Роль клеточной теории в становлении и развитии биотехнол...