Книга: Самая главная молекула. От структуры ДНК к биомедицине XXI века

Вековая мечта человека

<<< Назад
Вперед >>>

Вековая мечта человека

Наверное, самым важным периодом в истории человечества, определившим дальнейшее развитие цивилизации, было время (от X до V века до нашей эры), когда выводились домашние животные и культурные растения. Ведь именно появление домашних животных и культурных растений избавило людей от повседневной заботы о добывании пищи, позволило им вести оседлый образ жизни со всеми вытекающими отсюда социальными, культурными и экономическими последствиями.

До нас дошло мало сведений о том, как проходила эта многовековая селекционная работа. Очевидно, навыки ее передавались и совершенствовались из поколения в поколение. Мы знаем только, что даже сегодня, в наш стремительный век, работа селекционера требует чудовищного терпения и упорства. Обычно после десятилетий каждодневного труда селекционер добивается результатов лишь на склоне лет. А сколько селекционеров так и не дожили до того, что их усилия стали приносить плоды!

К моменту, когда человек стал вмешиваться в живую природу, она уже прошла длительный путь эволюции, причем ветви древа жизни так давно разошлись в разные стороны, что развивались уже как бы совершенно независимо. Природа позаботилась о том, чтобы эти разные ветви (виды) не могли переплетаться между собой: скрещивание представителей разных видов либо вообще невозможно, либо не дает воспроизводящего потомства. Так, нельзя скрестить кошку с собакой, а мул, помесь осла и лошади, хотя вполне жизнеспособен, но бесплоден.

Этот запрет накладывает колоссальные ограничения на селекционную работу. Фактически селекционеры вынуждены перетасовывать одни и те же гены, с небольшими вариациями. Это как если бы вы пришли в магазин купить колоду карт и вдруг обнаружили, что продаются только такие колоды, в которых все карты одинаковы (в одной – только семерки пик, в другой – только дамы треф и т. д.). А все различия внутри колод состоят лишь в том, что некоторые карты пропечатались чуть-чуть лучше, некоторые имеют едва заметные пятнышки и т. д. И, как назло, у каждой колоды есть своя характерная рубашка, так что их не перемешаешь – сразу по рубашке можно будет узнать карту. Примерно в таком положении находятся селекционеры, которым приходится тасовать, в сущности, почти одни и те же гены. Можно лишь восхищаться тем, каких замечательных результатов удалось достичь им в столь тяжелых условиях.

Но насколько свободно было бы творчество селекционеров, если бы не было межвидовых барьеров! Каких только замечательных гибридов не стремились вывести селекционеры-любители, упорно пытаясь преодолеть эти барьеры. Один из таких гибридов, существующих лишь в пламенном воображении энтузиастов, – растение с клубнями картофеля и плодами помидора. Подобного рода заманчивые гибриды были одно время в большой моде. Сообщалось даже о том, что удалось получить гибрид капусты и редьки. Все в этом гибриде было замечательно – и набор хромосом, и способность давать потомство. Правда, он имел корни капусты, а ботву – редьки. Долгие годы потом некоторые сатирики и юмористы не могли забыть этот случай.

Следовательно, перетасовка генов – такой же застарелый «пунктик» человека, как превращение одних веществ в другие (философский камень алхимиков). Недаром сказки и мифы изобилуют случаями превращения людей в животных и обратно, а также густо заселены межвидовыми гибридами (кентаврами, фавнами, пегасами, русалками, сиренами и т. д. и т. п.).

Поистине чудодейственная черта науки нашего времени состоит в том, что она делает былью одну за другой сказки и легенды, накопившиеся за многие века. Ядерная физика позволила превращать одни элементы в другие. Молекулярная биология преодолела запрет на межвидовое скрещивание. И какими наивными кажутся нам мечты алхимиков о золоте по сравнению с принципиально неограниченной возможностью производить энергию и, с другой стороны, устрашающей возможностью истребить все живое на Земле, которые вытекают из нашего умения сегодня превращать одни элементы в другие в ядерных реакторах и бомбах.

Поэтому и кентавры, и русалки кажутся безделками по сравнению с тем, что дает человечеству генная инженерия. Она позволяет тасовать гены организмов, сколь угодно далеко отстоящих друг от друга на эволюционной лестнице, – таких, например, как человек и бактерия.

Генная инженерия возникла как результат всего развития науки о ДНК. Но событием, позволившим непосредственно приступить к перетасовке генов, было открытие ферментов рестриктаз. Рестриктазы узнают определенные, короткие последовательности нуклеотидов и разрезают молекулу ДНК в этом месте. Такие последовательности могут случайно встретиться в любой ДНК. Поэтому если подействовать какой-то рестриктазой на ДНК, скажем, мухи, а одновременно ею же на ДНК слона, то произойдет случайная перетасовка генов мухи и слона. Чтобы получились длинные гибридные, химерные или, как их еще называют, рекомбинантные молекулы, нужно лишь добавить фермент ДНК-лигазу, сшивающий фрагменты ДНК друг с другом. Так в пробирке можно создать какие угодно комбинации генов, причем все они заведомо никогда не реализовались в живой природе из-за запрета на межвидовое скрещивание.

Но одно дело – создать химерную молекулу ДНК в пробирке, а совсем другое – сделать так, чтобы она была биологически активна, чтобы могла размножаться в составе живой клетки да еще менять ее генетические свойства. В этом и состоит основная проблема генной инженерии. Сразу же подчеркнем, что проблема эта еще далека от своего окончательного решения. Более того, в ходе работы возникли совершенно новые трудности, о которых даже не подозревали, когда она начиналась. Однако наряду с многочисленными трудностями природа приготовила для генных инженеров замечательный подарок в виде совершенно особых организмов, плазмид. Плазмиды играли и продолжают играть очень важную роль в генной инженерии и биотехнологии.

<<< Назад
Вперед >>>

Генерация: 3.629. Запросов К БД/Cache: 3 / 0
Вверх Вниз