Книга: Растения - гениальные инженеры природы

Сверхпрочные тканые и нетканые материалы

<<< Назад
Вперед >>>

Сверхпрочные тканые и нетканые материалы

Прочность конструкционных материалов, изготовляемых из пластических масс (маты, панели, пленки), можно повысить путем армирования их стекловолокном. Исследователи многих стран приложили немало усилий, чтобы определить, все ли виды стеклянных волокон и способы скрепления их между собой в нити и в ткани разного плетения одинаково хороши для эффективного армирования и нет ли здесь каких-либо существенных различий. Если различия существуют, то как создать идеальную волокнистую структуру? Результат ошеломляет: стеклянные волокна тем прочнее, чем они тоньше. Но это вовсе не значит, что более тонкое волокно труднее рвется, просто при уменьшении диаметра волокна вдвое прочность на разрыв уменьшается в гораздо меньшей пропорции. Чтобы повысить долговечность пластмасс, целесообразнее применять стеклоткани, в которых тонких стекловолокон содержится больше, чем толстых. Но это лишь одно чрезвычайно важное открытие. Другое не менее важное знание состоит в том, что наиболее благоприятное соотношение длины и толщины стеклянной нити составляет 200:1. Большая длина уже не будет способствовать дальнейшему повышению прочности изделия, к тому же возникают технологические трудности, связанные с необходимостью равномерно распределить волокна в массе пластика. Лабораторные исследования привели к созданию промышленных стеклопластиков различных типов. Таков итог эволюционной разработки идеи, выдвинутой в противоположность приемам жесткого конструирования (фото 25).


Фото 25. Армирование с помощью нетканого стекловолокна повышает прочность листовых и панельных изделий из синтетических смол.



Фото 26. Использование растениями волокнистых материалов обеспечивает высокую прочность клеточной оболочка (на снимке — структура клеточной стенки у Valonia ventricosa).

Как же решили растения в процессе эволюционного развития проблему создания прочной клеточной оболочки? Ответ не будет неожиданным: эволюция дала такой же результат, как и разработка идеи стеклопластика. Структура стенки растительной клетки практически не отличается от структуры синтетических материалов, армированных стекловолокном (фото 26). Для нас, людей, этот факт служит доказательством правильности наших научных изысканий.

В тех случаях, когда прочность, создаваемая путем использования короткого неориентированного стекловолокна, оказывается недостаточной, промышленность вместо стекломатов применяет тканые стекловолокнистые материалы (фото 27). Вполне оправдывает себя на практике стеклянная ткань с простым, крестовым переплетением нитей, например ткань саржевого плетения. Аналогичная картина наблюдается и в природе: структуру, похожую на крестовое плетение, имеют клеточные оболочки тех тканей, которые подвергаются значительным механическим нагрузкам (фото 28).


Фото 27. Там, где недостаточно запаса прочности, создаваемого армированием пластмасс нетканым стекловолокном с неупорядоченной структурой волокон, применяются тканые стекломатериалы разных видов плетения.



Фото 28. Аналогичные структуры можно найти и в растительном мире. Перед нами клеточная стенка у Alstonia spathulata.
<<< Назад
Вперед >>>

Генерация: 4.881. Запросов К БД/Cache: 3 / 1
Вверх Вниз