Книга: Биологические основы старения и долголетия

Конформационные изменения ДНК

<<< Назад
Вперед >>>

Конформационные изменения ДНК

Метод кругового дихроизма (КД) чувствителен к изменениям структуры ДНК такого рода, поэтому В. М. Лобачев, Т. М. Третьяк, А. М. Кузин и автор этих строк его использовали для ответа на вопрос: изменяется ли конформация двойной спирали ДНК в процессе старения? ДНК, выделенная из печени и мозга очень старых крыс (возраст 38 месяцев), имеет спектры, практически идентичные спектрам КД тех же ДНК, облученных ионизирующей радиацией (рис. 9). Оптические активности положительной и отрицательной полос спектров КД ДНК, выделенной из тканей старых животных, или ДНК, облученной в дозе 200 гр, были снижены примерно на 20 % по сравнению с ДНК молодых животных, и это различие было статистически достоверно.


Рис. 9. Спектры кругового дихроизма (КД) ДНК, выделенной из тканей молодых и старых крыс, в сравнении с КД ДНК тимуса теленка.

 А. 1. ДНК мозга молодых (возраст 3 мес.) крыс. 2. ДНК мозга старых (возраст 38 мес.) крыс. 3. Облученная ДНК мозга молодых крыс (доза — 1000 ГР).

Б. 1. ДНК печени молодых крыс. 2. Облученная ДНК печени молодых крыс (доза 200 Гр). 3. Облученная ДНК печени молодых крыс (доза 300 Гр). 4. Облученная ДНК печени молодых крыс (доза 1000 Гр).

В. 1. ДНК тимуса теленка. 2. ДНК печени старых крыс. 3. Облученная ДНК печени старых крыс (доза 1000 Гр). (Из работы М. М. Виленчика, Т. М. Третьяк, В. М. Лобачева, А. М. Кузина, Доклады АН СССР, 1981.)

Анализ обнаруженных изменений показал, что наблюденные изменения спектров КД ДНК при старении или после гамма-облучения ДНК не определяются образованием однонитевых разрывов в ДНК; их нельзя также полностью объяснить денатурационными изменениями. Эти изменения спектров КД можно объяснить переходом модифицированных участков ДНК из "обычной" (канонической) В-формы в иную конформацию. Подчеркнем еще раз, что эти конформационные изменения отличаются от ранее изученных денатурационных изменений ДНК.

В то время, когда мы получили первые данные о возрастных изменениях спектров КД, был опубликован ряд работ, в которых было показано, что двуспиральные синтетические полинуклеотиды с определенной последовательностью оснований могут находиться в левоспиральной конфигурации (названной Z-формой), причем спектр КД таких полинуклеотидов оказывается инвертированным (обратным по знаку). Таким образом, к предположению о существовании таких особых форм ДНК разные группы исследователей пришли независимо, исходя из результатов изучения изменений ДНК при старении и анализа физических свойств полинуклеотидов с определенной последовательностью оснований.

Такие последовательности встречаются и в природной ДНК, в частности в ДНК млекопитающих. Вероятно, эти последовательности in vivo со временем также могут переходить в левоспиральные участки, и количество таких участков может возрастать по нескольким причинам. Во-первых, вследствие метилирования оснований, облегчающих переход отдельных участков ДНК из канонической В-конформации в левоспиральную Z-конформацию. Во-вторых, вследствие локального изменения (увеличения) ионной силы в отдельных участках хроматина или накопления в них определенных веществ, также облегчающих такой переход. В-третьих, образованию, а главное "фиксации" изменений конформации определенных участков ДНК in vivo должно способствовать образование в этих участках повреждений первичной структуры, о которых речь шла ранее, а также ковалентных сшивок ДНК — белок и особенно сшивок ДНК — белок-ДНК.

Однако в клетке, вероятно, существуют белки, способные переводить ДНК из левоспиральной в обычную — В-конформацию. И поскольку предполагалось образование левоспиральных участков ДНК после облучения и были основания считать такое образование одним из механизмов повреждающего действия излучения на клетки, то теоретически был получен ответ и на вопрос: в каких именно клетках белки, "репарирующие" левоспиральные участки, нужно искать в первую очередь. Ясно, что в тех, которые очень устойчивы к излучению, в частности, потому, что содержат относительно большое количество "Z-репарирующих белков".

Это предположение было опубликовано в 1981 году, а в конце 1985 года поступило сообщение о том, что в одном из видов бактерий М. Radiodurans, выделенном лет двадцать назад из котлов ядерных реакторов и, следовательно, обладающем исключительно высокой радиоустойчивостью (отсюда и его латинское название), содержатся белки, под влиянием которых ДНК из Z-конформации может возвращаться в обычную В-конформацию.

Раз уж мы коснулись проблемы биологической роли участков ДНК, находящихся в левоспиральной конформации, то отметим, что химические канцерогены также могут индуцировать в B?Z переход. А такие переходы имеют значение в канцерогенезе. Но если это так, то происходящие при старении или после облучения изменения конформации ДНК также могут иметь значение соответственно в спонтанном и радиационном канцерогенезах. Во всяком случае, логичен вопрос: не являются ли B?Z переходы "почвой", подготавливающей развитие рака в пожилом и старческом возрасте? И далее — не обладают ли антиканцерогенными свойствами белки, осуществляющие обратный Z?B переход, т. е. не могут ли они задерживать развитие спонтанного, или химического, или радиационного канцерогенеза? Сформулированные вопросы, как говорится, не только академические: они представляют интерес и в практическом плане. И вполне поддаются исследованию с помощью современных методов, хотя такие исследования должны включать и сложные методики.

Образование "дополнительных" участков ДНК, находящихся в Z-конформации, представляет потенциальную канцерогенную опасность прежде всего потому, что при этом должна нарушиться регуляция функций генома. Имеются данные о роли таких конформации в регуляции активности генов и, возможно, в дифференцировке клетки. А ведь нарушение регуляции генов и состояния дифференцировки клетки многие биологи считают основой канцерогенеза.

Заключение о накоплении при старении клеток участков их ДНК, находящихся в необычных конформациях, не противоречит предположению об их репарируемости. Часть ДНК так плотно упакована в хроматине, что ее измененные участки просто могут быть недоступны для репарирующих ферментов. А если репарирующие ферменты способны находить и репарировать измененные участки ДНК, то по тем или иным причинам осуществляется "залечивание" не всех из них (т. е. могут быть кинетические и термодинамические ограничения).

Именно исходя из этого еще в 1970 году автором была сформулирована концепция о неизбежном ускользании части спонтанных повреждений ДНК от репарации и об их неизбежном накоплении в процессе старения. (Независимо в радиобиологию был введен термин "неполнота репарации", также означающий, что репарация осуществляется не со 100 %-ной эффективностью.)

Переход ДНК из B- в Z-конформацию облегчается при ее метилировании. Поэтому одно из объяснений наших данных о накоплении "Z-ДНК" состояло в том, что в процессе старения возрастает метилируемость отдельных участков. Такое предположение подкреплялось расчетами скорости "непрограммированного" метилирования ДНК, но противоречило сложившемуся мнению о том, что содержание 5-метил-цитозина в ДНК при старении уменьшается (В. Ф. Ванюшин с сотрудниками в МГУ и Г. Д. Бердышев с сотрудниками в КГУ). Однако недавно обнаружено, что содержание 5-метилцитозина в ДНК нематод возрастает при старении. Таким образом, изменения характера метилируемости ДНК с возрастом, вероятно, зависят от вида и, возможно, типа клеток. Ведь органо- и цитоспецифические возрастные молекулярные изменения наблюдали неоднократно, в частности, на уровне мембран. Наверное, такие закономерности существуют и на уровне ДНК.

<<< Назад
Вперед >>>

Генерация: 4.186. Запросов К БД/Cache: 3 / 1
Вверх Вниз