Книга: Микробы хорошие и плохие. Наше здоровье и выживание в мире бактерий

Чудовище внутри нас

<<< Назад
Вперед >>>

Чудовище внутри нас

Запах переспелой тыквы и по сей день вызывает у Кевина Трейси в памяти тот майский вечер 1985 года, когда в отделение неотложной помощи Нью-Йоркской больницы привезли маленькую девочку с сильными ожогами. Трейси в то время проходил второй год резидентуры, обучаясь на нейрохирурга. У одиннадцатимесячной Дженис было обожжено больше 75 % тела. За несколько минут до этого, ползая на полу, она оказалась между ног своей бабушки, когда та снимала с плиты кастрюлю с кипящей водой. Трейси закончил осмотр ужасных ожогов, и медсестры намазали тело младенца толстым слоем антибиотического крема “Сильваден”. Его резкий, сладковатый запах прочно запечатлелся в памяти Трейси за ту ночь и последовавший за ней беспокойный месяц1.

Трейси знал, что шансы выжить у Дженис невелики, потому что никакой, даже самый толстый слой антибиотической мази не сможет заменить утраченной кожи – естественной преграды, которая защищает тело от невидимого моря окружающих бактерий. Стоит бактериям проникнуть внутрь, дальше кожи и слизистых оболочек, и это может привести к воспалению всего тела – сепсису, природа которого по-прежнему плохо изучена (в восьмидесятые годы считалось, что его вызывают бактериальные токсины). Сепсис часто оказывается смертелен, если принимает одну из двух тяжелых форм. У Дженис развились обе.

Через четыре дня после того, как Дженис попала в больницу, давление крови у нее резко упало, потому что кровеносные сосуды внезапно стали так протекать, что значительная часть жидкости из них вышла в окружающие ткани. У девочки начался септический шок. В течение двенадцати часов Трейси и дюжина других врачей и медсестер трудились, поддерживая в ее теле жизнь с помощью сосудосуживающих средств и обильного вливания внутривенной жидкости. Все это время они помнили о том, что если шок продлится больше половины суток, то никакие усилия не помогут спасти внутренние органы и конечности младенца. Но они понятия не имели, сколько времени продержится такое состояние.

Наутро, в девять часов, давление крови у Дженис поднялось и стабилизировалось почти так же быстро, как раньше обрушилось. Ей не пришлось ампутировать пальцы ни на руках, ни на ногах, но было весьма вероятно, что легкие, почки и другие органы получили повреждения. После этого организм девочки в течение трех недель медленно восстанавливался после шока, и когда ей исполнился год, вся семья собралась в палате, чтобы отпраздновать ее день рождения – с шариками и шоколадным тортом.

Но на следующий день, когда Дженис на руках у медсестры только что допила обеденную порцию смеси из бутылочки, глаза у нее внезапно закатились, и кардиомонитор показал остановку сердца. Трейси вспоминает как страшный сон: он прибежал в палату на крики сестры, задействовал аппарат для искусственного дыхания и непрямого массажа сердца, а затем помогал кардиохирургу, тщетно пытавшемуся заставить сердце девочки заработать. Маленькой Дженис удалось пережить молниеносный септический шок, но ее убил последовавший за ним отказ органов, вызванный его скрытным собратом – тяжелым сепсисом.

Но почему? Ни тогда, ни теперь никому не удавалось понять, почему у одних пациентов тяжелый сепсис или септический шок развивается, а у других – нет. Иногда казалось очевидным, что все дело в развитии масштабной бактериальной инфекции. В других случаях, как с маленькой Дженис, бактерии, которые могут способствовать сепсису, столь немногочисленны и незаметны, что их так и не удается обнаружить в ходе анализов крови и мочи или при вскрытии.

“Этот прискорбный и загадочный случай заставил меня выбрать другую специальность, – говорит Трейси. – Вместо того чтобы стать нейрохирургом, я решил заняться исследованиями сепсиса”. Хотя сепсис и редко называют по имени в свидетельствах о смерти, от него умирают около четверти миллиона американцев ежегодно. Часто он развивается как “осложнение” после тяжелых травм и операций или в результате хронических заболеваний2. “В наши дни, когда мы слышим о том, что кто-то умер от бактериальной инфекции, – говорит Трейси, – истинная причина смерти – почти всегда сепсис”.

Особенно велик риск развития сепсиса у людей с тяжелыми ожогами, иммунодефицитом, диабетом или параличом. В случае последних двух групп нарушенное кровообращение и открытые язвы делают человека предрасположенным к бактериальному заражению крови. Например, парализованный актер Кристофер Рив умер от сепсиса, развившегося в результате заражения пролежня, что нередко бывает с людьми, прикованными к постели или инвалидному креслу. По оценкам специалистов, еще миллионы людей ежегодно умирают от сепсиса на последних стадиях развития смертельных заболеваний, таких как рак или болезни сердца.

При этом, хотя к сепсису может приводить присутствие на запретной территории любых бактерий, некоторые их разновидности вызывают его чаще, чем другие. К самым печально известным относится патогенный штамм USA300 устойчивого к метициллину золотистого стафилококка. Именно он убил в 2003 году студента колледжа Рики Ланнетти, замечательного футболиста двадцати одного года, и заставил врачей ампутировать ноги двум молодым женщинам из Балтимора, которых зимой того же года лечили от воспаления легких в Медцентре Джонса Хопкинса. Все они стали жертвами септического шока. Вызывающий “токсический шок” стрептококк, от которого в 1990 году умер создатель “Маппет-шоу” Джим Хенсон, тоже известен своей склонностью вызывать сепсис.

За двадцать пять лет исследований, в которых Трейси принимал участие, удалось выяснить, что не сами бактерии приводят, по крайней мере напрямую, к смертоносным нарушениям, сопровождающим сепсис. Осенью того года, когда умерла маленькая Дженис, Трейси занялся исследованиями сепсиса вместе с иммунологами Энтони Черами и Брюсом Бойтлером из Рокфеллеровского университета (удобно расположенного по соседству с ожоговым отделением Нью-Йоркской больницы). Черами изучал работу одного из сигнальных веществ иммунной системы (цитокинов), вызывающего сильную потерю веса (изнуряющую болезнь) у пациентов с хроническими инфекциями или поздними стадиями рака. Это вещество получило название “фактор некроза опухоли” (ФНО), потому что именно оно служит главным оружием клеток иммунной системы, таких как макрофаги, убивающих клетки раковой опухоли.

Как выяснилось, макрофаги используют ФНО в том числе и для того, чтобы убивать бактерий и зараженные клетки. Бойтлер, в свою очередь, работал тогда над еще одним, дополнительным, проектом, изучая последствия введения мышам подавляющих ФНО антител непосредственно перед инъекцией шоковой дозы эндотоксина – вещества, имеющегося на поверхности клеток у 90 % всех бактерий. Все мыши, которым Бойтлер вводил оба вещества, остались живы3. Это небольшое исследование поднимало большой научный вопрос: не может ли ФНО, а не бактериальные токсины, быть тем смертоносным ядом, с действием которого связан сепсис.

Оказалось, что так оно и есть, и Трейси удалось найти тому доказательства. Для начала он показал, что септический шок развивается у подопытных животных даже в том случае, если им вводят только ФНО4. Затем он продемонстрировал, что развитие шока можно предотвратить, если, прежде чем вводить в кровь животным бактерий, ввести им подавляющие ФНО антитела5. Вывод, который следовал из этих результатов, поставил представления медиков о сепсисе с ног на голову: смертоносный сепсис вызывают не бактерии, а собственная иммунная система пациента.

Например, так называемый эндотоксин на самом деле оказался неактивным веществом – липополисахаридом. Его присутствие на поверхности большинства бактериальных клеток служит своего рода штрих-кодом, по которому иммунная система узнаёт об их присутствии в организме. Теперь мы знаем, что борющиеся с бактериями клетки иммунной системы, такие как макрофаги и нейтрофилы, реагируют на этот сигнал тем, что приводят в режим повышенной боевой готовности свое биохимическое оружие, в частности ФНО. Проблемы начинаются тогда, когда иммунной системе не удается сразу уничтожить замеченных бактерий.

Сохраняющееся присутствие таких бактерий, даже в небольшом количестве, способно спровоцировать иммунную систему на отчаянные меры, приводящие к саморазрушению. То самое воспаление, которое, действуя прицельно, помогает подогнать клетки иммунной системы и антитела к месту развития инфекции, может оказаться смертельным для организма, когда охватывает его целиком, без разбора открывая кровеносные сосуды и выводя из строя систему кровообращения, что приводит к отмиранию внутренних органов и конечностей из-за недостатка кислорода.

Статьи Трейси об этих эпохальных открытиях были опубликованы в ведущих научных журналах Nature и Science в 1986 и 1987 годах. В начале девяностых биотехнологические компании уже в спешном порядке проводили испытания препаратов, подавляющих ФНО, на пациентах. Их ждал полный провал. “Подавлять работу ФНО после развития шока – это как закрывать дверь конюшни после того, как лошадь уже убежала, – говорит Трейси, теперь понимающий, в чем было дело. – После выделения ФНО в достаточно большом количестве вызванные им разрушения уже нельзя исправить”. Кроме того, учитывая сложность механизмов иммунного ответа, Трейси и некоторые другие ученые заподозрили, что не только ФНО, но и многие другие вещества могут играть ключевую роль в стремительном каскаде реакций, сопровождающих развитие септического шока у разных пациентов и на разных его этапах. Пока исследователи продолжают проникать в эти тайны, недавний крах компаний, созданных под разработку лекарств от сепсиса, научил крайней осторожности инвесторов, чье участие необходимо для появления новых подобных средств.

Трейси, в свою очередь, занялся исследованием возможных методов лечения другой, не столь яркой формы сепсиса, от которой в итоге и умерла маленькая Дженис. Он подозревал, что медленный процесс, приводящий к отказу органов при тяжелом сепсисе, связан с постепенным падением во всем организме барьеров, необходимых для его нормальной работы. “При тяжелом сепсисе не происходит такого сильного повреждения органов, как при септическом шоке, но клетки начинают протекать, желчь смешивается с кровью, легкие наполняются жидкостью, – объясняет Трейси. – Вероятно, когда такие барьеры перестают работать на клеточном уровне, то вскоре и органы начинают отказывать”. При тяжелом сепсисе у пациентов и подопытных животных наблюдаются сравнительно нетоксичные концентрации ФНО в кровотоке, добавляет он, в любом случае намного ниже, чем при остром шоке. А от препаратов, подавляющих ФНО, при тяжелом сепсисе может стать только хуже.

В 1994 году, когда Трейси стал старшим научным сотрудником Института медицинских исследований Файнстайна в Манхассете (штат Нью-Йорк), он всерьез взялся за изучение тяжелого сепсиса. Он и его ученики начали искать другие цитокины, помимо ФНО, которые могут выделяться в ходе постепенного развития этого синдрома. Особенно интересной находкой оказался выделенный ими белок амфотерин (или HMGBi) – на первый взгляд плохой кандидат на эту роль, потому что его можно найти едва ли не во всех здоровых клетках. Но дальнейшие исследования показали, что у пациентов, умиравших от тяжелого сепсиса, наблюдался безумно высокий уровень амфотерина в крови. Кроме того, Трейси и его группе удалось продемонстрировать, что, подавляя амфотерин моноклональными антителами, подопытных животных можно вылечить даже на поздних стадиях развития тяжелого сепсиса6.

Трейси и многие другие иммунологи теперь рассматривают тяжелый сепсис и септический шок как два разных синдрома, порождаемых одним и тем же состоянием “фрустрации” иммунной системы. Когда макрофагам и другим убивающим бактерий клеткам не удается уничтожить их на ранних этапах развития инфекции, их биохимические “призывы к оружию” могут достичь запредельного уровня. Если это выработка ФНО, то в организме стремительно развивается септический шок. Если же это амфотерин, то иммунная система запускает механизм постепенного распада – тяжелый сепсис.

Учитывая, что тяжелый сепсис развивается медленнее, чем септический шок, препараты, подавляющие амфотерин, вполне могут оказаться действенными там, где препараты, подавляющие ФНО, провалились. Теперь уже ясно, что средства подавления ФНО необходимо применять до того, как организм полетит в пропасть септического шока, однако антитела против амфотерина иногда позволяют спасти подопытное животное, даже если ввести их через тридцать шесть часов после начала тяжелого сепсиса. В 2007 году биофармакологическая компания MedImmune из Мэриленда и собственная компания Трейси Critical Therapeutics уже начали совместную работу по подготовке к испытаниям на пациентах препаратов на основе антител против амфотерина.

В 2000 году Трейси занялся исследованиями в еще одном направлении, на этот раз связанном с вмешательством в процесс развития сепсиса на более раннем этапе, позволяющем предотвратить реализацию иммунной системой любого из двух смертельно опасных сценариев. Трейси и его ученикам было известно, что блуждающий нерв, управляющий такими жизненно важными функциями, как дыхание и сердцебиение, также регулирует и развитие воспалений. Они обнаружили, что с помощью электрической стимуляции этого нерва можно спасать жизнь подопытных животных, у которых начинается сепсис7. При этом, что особенно важно, стимуляция блуждающего нерва не подавляла способность иммунной системы бороться с бактериями. Она просто не давала этой системе сорваться с катушек, запустив в организме процесс саморазрушения. За следующие четыре года Трейси и его коллегам удалось разобраться, как именно выделение блуждающим нервом ацетилхолина (нейромедиатора, посредством которого осуществляется и регуляция работы органов) действует на клетки иммунной системы, заставляя их остановить перепроизводство воспалительных цитокинов, таких как ФНО и амфотерин8.

“Возможно, нам удастся разработать устройство, аналогичное кардиостимулятору, которое будет подавлять синтез ФНО и амфотерина в организме пациента”, – говорит Трейси о возможном применении этого открытия. Другие его коллеги по Институту Файнстайна, в свою очередь, показали, что развитие сепсиса у мышей можно также остановить, стимулируя блуждающий нерв с помощью специальных препаратов или же вводя животным небольшое количество никотина, который клетки принимают за нейромедиатор этого нерва – ацетилхолин9. Но до внедрения методов лечения, основанных на этих открытиях, еще очень далеко, учитывая, что биотехнологические компании стали бояться вкладывать деньги в разработку любых антисептических средств. Несмотря на это, иммунологи, в том числе Трейси, очень надеются, что рано или поздно они научатся лечить сепсис. “Не стоит забывать, что еще в начале восьмидесятых, если у животного развивался сепсис, его ничем нельзя было спасти, – отмечает он. – Теперь же у нас есть множество средств, позволяющих лечить таких животных. История показывает, что если по-настоящему разобраться, как спасать животных, рано или поздно это скорее всего позволит спасать и пациентов”.

В более глубоком плане, говорит Трейси, наши новые знания о причинах развития сепсиса помогли найти новые стратегии борьбы с инфекциями. Если раньше единственная стратегия была направлена исключительно на уничтожение микробов, теперь у нас есть методы лечения, корректирующие реакцию организма на их вторжение. “Древние греки были правы, – продолжает он. – В течение двух тысяч лет в основе созданной ими теории медицины лежало представление о равновесии жизненных соков, согласно которому пациент выздоровеет, если в его организме будет равновесие. Все изменилось в XIX веке – с появлением микробной теории болезней”. Микробная теория дала нам много спасительных средств, но открытие того, что иммунная система сама может отравлять наш организм, заставляет нас вновь сосредоточиться на лечении больного, а не болезни.

Пока весь мир ожидает появления универсальных антисептических средств, долю летальных исходов септического шока удалось снизить благодаря применяемым реаниматорами достижениям в области методов поддержания жизни, таких как быстрое внутривенное вливание замещающих жидкостей, более эффективные сосудосуживающие средства и даже жесткий контроль уровня глюкозы в крови10. Сегодня уже почти две трети жертв сепсиса выживают, хотя еще четверть века назад доля выживших едва достигала половины. Тревожно то, что этих достижений оказалось недостаточно, чтобы компенсировать рост заболеваемости. По оценкам, полученным недавно в Центрах по контролю и профилактике заболеваний, за период с 1979 по 2000 год заболеваемость сепсисом в США выросла примерно с 164 000 до почти 660 000 случаев в год, или с 83 до 240 случаев на каждые 100 000 американцев11. Хуже того, эти оценки роста заболеваемости оказались сильно заниженными, потому что учитывали только пациентов, у которых гемокультуры подтвердили наличие бактерий в крови. Однако, как прекрасно известно врачам-реаниматорам, инфекция, вызвавшая сепсис, нередко так и остается невыявленной.

Исследования Дерека Ангуса из Питсбургского университета показали, что общее число случаев сепсиса в США – независимо от результатов анализа гемокультур – в 1999 году уже приближалось к миллиону и росло со скоростью больше 6 % в год12. “Непрерывный рост эпидемии тяжелого сепсиса в этой стране должен заставить нас забить тревогу”, – предупреждал Ангус. Отчасти этот рост связан с увеличением среднего возраста населения, потому что после восьмидесяти пяти лет риск развития сепсиса сильно возрастает. Но помимо этого, за последние пятьдесят лет изменился и “типичный” человеческий организм.

<<< Назад
Вперед >>>

Генерация: 0.395. Запросов К БД/Cache: 0 / 0
Вверх Вниз