Книга: Вселенная из ничего: почему не нужен Бог, чтобы из пустоты создать Вселенную

Глава 6: Бесплатный обед на Краю Вселенной

<<< Назад
Вперед >>>

Глава 6: Бесплатный обед на Краю Вселенной

Космос большой. Действительно большой. Вы просто не поверите, насколько он необычайно, умопомрачительно большой. Я имею в виду, вам может казаться, что от вашего дома до аптеки далеко, но это просто ерунда в сравнении с космосом.

— Дуглас Адамс, «Автостопом по Галактике»

Я полагаю, что одно из двух — это не так уж плохо. Мы, космологи, догадывались (и в конечном итоге это оказалось правдой), что Вселенная плоская, так что мы не были сильно смущены шокирующим фактом, что пустой космос действительно содержит энергию, и к тому же вполне достаточно энергии, чтобы оказывать влияние на расширение Вселенной. Существование этой энергии было невероятно, но еще более невероятен тот факт, что этой энергии недостаточно для того, чтобы сделать Вселенную непригодной для жизни. Ведь если бы энергия космоса соответствовала первоначальным предположениям, которые я описал ранее, коэффициент расширения был бы столь велик, что все, что мы сейчас наблюдаем во Вселенной, мгновенно скрылось бы за горизонтом. Вселенная стала бы холодной и темной гораздо раньше, чем Солнце и наша Земля смогли бы сформироваться.

Из всех причин полагать, что Вселенная была плоской, пожалуй, самая простая для понимания является результатом факта, что было хорошо известно, что Вселенная почти плоская. Даже в прежние годы, до обнаружения темной материи, известное количество видимого вещества внутри и вокруг галактик составляло, возможно, 1 процент от общего количества материи, необходимой, чтобы дать плоскую Вселенную.

Сейчас 1 процент может показаться не так много, но возраст нашей Вселенная очень большой, миллиарды лет. Если предположить, что гравитационные эффекты материи или излучения влияют на прогрессирующее расширение, как мы, физики, всегда думали, то, если Вселенная не абсолютно плоская, по мере расширения она становится все менее и менее плоской.

Если она открытая, скорость расширения растет более быстрыми темпами, чем это было бы для плоской Вселенной, раздвигая материю все дальше и дальше друг от друга по сравнению с тем, что было бы в противном случае, уменьшая суммарную плотность и очень быстро давая бесконечно малую часть плотности, необходимой, чтобы привести к плоской Вселенной.

Если она закрытая, то это быстрее замедляет расширение и, в конечном итоге, приводит к тому, что она вновь сожмется. Все это время плотность сначала уменьшается более медленными темпами, чем для плоской Вселенной, а затем, когда Вселенная коллапсирует обратно, плотность начинает увеличиваться. Опять же, отклонение от плотности, ожидаемой для плоской Вселенной, со временем увеличивается.

Вселенная увеличилась в размерах почти в триллион раз, когда ее возраст был равен 1 секунде. Если бы в это ранний момент плотность Вселенной не была практически точно такой, как ожидается от плоской Вселенной, а составляла бы, скажем, только 10 процентов плотности, необходимой для плоской Вселенной в то время, то сегодня плотность нашей Вселенной отличалась бы от плотности плоской Вселенной, по меньшей мере, в триллион раз. Это гораздо больше, чем всего лишь в 100 раз, отличающие плотность видимого вещества во Вселенной от плотности, которая бы представляла плоскую Вселенную сегодня.

Эта проблема была хорошо известна уже в 1970-е годы, и ее стали называть «проблемой плоскостности». Рассматриваемая геометрия Вселенной подобна воображаемому карандашу, балансирующему вертикально на кончике на столе. Малейший дисбаланс, в ту или другую сторону, и он быстро опрокинется. Так же и для плоской Вселенной. Малейшее отклонение от плоскостности быстро нарастает. Таким образом, как Вселенная может быть почти плоской сегодня, если бы не была абсолютно плоской?

Ответ прост: сегодня она должна быть практически плоской!

Этот ответ на самом деле не настолько прост, потому что он вызывает вопрос: «Как начальные условия сговорились, чтобы получить плоскую Вселенную?»

Есть два ответа на этот второй, более сложный вопрос. Первый восходит к 1981 году, когда молодой физик-теоретик и исследователь-постдок из Стэнфордского университета, Алан Гут, размышлял о проблеме плоскостности и двух других связанных с ней проблемах стандартной картины Большого Взрыва: так называемой проблеме горизонта и проблеме монополя. Нас здесь интересует только первая, так как проблема монополя лишь усугубляет как проблему плоскостности, так и проблему горизонта.

Проблема горизонта связана с тем, что космическое микроволновое фоновое излучение чрезвычайно однородно. Небольшие отклонения температуры, которые я описал выше, представляют собой вариации плотности материи и излучения в прошлом, когда Вселенной было несколько сотен тысяч лет, менее чем 1 часть на 10000, если сравнивать с остальным однородным фоном плотности и температуры. Поэтому, хотя я сфокусировал внимание на малых отклонениях, возникал более глубокий, более актуальный вопрос: «Как Вселенная изначально стала такой однородной?»

В конце концов, если вместо прежнего снимка космического микроволнового фонового излучения (где колебания температуры в несколько частей на 100 000 отображаются разными цветами) я покажу температурную карту неба в микроволновом диапазоне в линейном масштабе (с вариациями в оттенках, отображающими вариации температуры, скажем, примерно ± 0, 03 градуса [Кельвина] соответствует средней фоновой температуре около 2,72 градусов выше абсолютного нуля или вариации 1 части на 100 относительно среднего), карта будет выглядеть следующим образом:


Сравните это изображение, которое не содержит ничего примечательного в плане структуры, с аналогичной проекцией поверхности Земли, с лишь слегка большей чувствительностью, с цветовыми вариациями, представляющими вариации относительно среднего радиуса примерно 1 части на 500:


Из этого следует, что Вселенная, в больших масштабах, невероятно однородна.

Как такое может быть? Что ж, можно было бы просто предположить, что в древние времена ранняя Вселенная была горячей, плотной, и пребывала в тепловом равновесии. Это означает, что все горячие точки охлаждались бы, а холодные пятна нагревались бы, пока первичный бульон не достиг бы одинаковой температуры на всем своем протяжении.

Однако, как я указывал ранее, когда Вселенной было несколько сотен тысяч лет, свет мог пройти лишь несколько сотен тысяч световых лет, что составляет небольшой процент от того, что сейчас представляет собой вся наблюдаемая Вселенная (это прошлое расстояние представляло бы собой угол всего лишь около 1 градуса на карте всей микроволновой фоновой поверхности последнего рассеяния, наблюдаемого сегодня). Поскольку Эйнштейн говорит нам, что никакая информация не может распространяться быстрее света, согласно стандартной картине Большого Взрыва нет просто никакой возможности, чтобы часть того, что сейчас является наблюдаемой Вселенной, в то время влияла бы на существование и температуру других частей на угловых масштабах, больше чем примерно 1 градус. Таким образом, невозможно, чтобы газ на этих масштабах мог бы быть со временем термализован, чтобы привести повсеместно к такой равномерной температуре!

Физик-ядерщик Гут размышлял о процессах, которые могли происходить в ранней Вселенной, и которые могли быть важными для понимания этой проблемы, когда придумал для них абсолютно блестящее объяснение. Если, когда Вселенная охлаждалась, она переживала какую-то переходную фазу, например, когда вода замерзает в лед или железная болванка при охлаждении приобретает магнитные свойства, то могла быть решена не только проблема горизонта, но также проблема плоскостности (и, если на то пошло, проблема монополя).

Если вы любите пить по-настоящему холодное пиво, с вами, возможно, случалось такое: вы берете холодную бутылку пива из холодильника и, когда ее открываете и снижаете давление внутри, пиво вдруг замерзает полностью, и при этом может даже треснуть бутылка. Это происходит потому, что при высоком давлении предпочтительным низкоэнергетическим состоянием пива является жидкая форма, а как только давление выпускается, предпочтительным низкоэнергетическим состоянием пива становится твердое состояние. Во время фазового перехода может высвобождаться энергия, потому что низкоэнергетическое состояние в одной фазе может иметь более низкую энергию, чем низкоэнергетическое состоянии в другой фазе. Когда такая энергия выделяется, ее называют «скрытой теплотой».

Гут понял, что, когда сама Вселенная охлаждалась от расширения Большого взрыва, конфигурация материи и излучения в расширяющейся Вселенной, возможно, на некоторое время «застряла» в некотором мета-стабильном состоянии, до тех пор, пока, когда Вселенная, наконец, не остыла еще больше, эта конфигурация вдруг не подверглась фазовому переходу в энергетически предпочтительное основное состояние материи и излучения. Энергия, запасенная в конфигурации «ложного вакуума» Вселенной до завершения фазового перехода — «скрытая теплота» Вселенной, если хотите — могла бы существенно повлиять на расширение Вселенной в период до перехода.

Энергия ложного вакуума вела бы себя так же, как энергия, представленная космологической постоянной, потому что она действовала бы как энергия, пронизывающая пустое пространство. Она вызывала бы расширение Вселенной во времени, происходящее все быстрее и быстрее. В конце концов, то, что впоследствии стало нашей наблюдаемой Вселенной, начало бы расти быстрее скорости света. Это допускается общей теорией относительности, хотя это, похоже, нарушает специальную теорию относительности Эйнштейна, которая гласит, что ничто не может двигаться быстрее, чем скорость света. Но надо быть похожим на юриста и разобрать это чуть более тщательно. Специальная теория относительности говорит, что ничто не может двигаться в пространстве быстрее скорости света. Но само пространство может делать все, что, черт возьми, оно хочет, по крайней мере, в общей теории относительности. И когда пространство расширяется, оно может разносить друг от друга удаленные объекты, которые покоятся в этом пространстве, на сверхсветовых скоростях.

Оказывается, во время этого инфляционного периода Вселенная могла расшириться более чем в 1028 раз. Хотя это невероятная цифра, это могло произойти за доли секунды в очень ранней Вселенной. В этом случае всё в пределах нашей наблюдаемой Вселенной, перед тем как произошла инфляция, когда-то помещалось в области гораздо меньшей, чем мы установили бы, если бы инфляции не было, и самое главное, настолько маленькой, что вся эта область имела достаточно времени для термализации и установления одинаковой температуры.

Инфляция сделала возможным еще одно довольно общее предсказание. Когда шарик надувают и он становится все больше и больше, искривление на его поверхности становится все меньше и меньше. Что-то подобное происходит и с Вселенной, которая увеличивается в размерах по экспоненте, как это происходит во время инфляции — под действием постоянной и огромной энергии ложного вакуума. Действительно, к моменту, когда инфляция закончится (решая проблему Горизонта) искривление Вселенной (если оно вначале равно нулю) будет столь малым, что вплоть до сегодняшнего дня при точном измерении Вселенная будет практически плоской.

Инфляция — единственное на сегодня реальное объяснение, как однородности, так и плоскостности Вселенной, основанное на том, что может быть фундаментальными и заслуживающими доверия микроскопическими теориями частиц и их взаимодействий. Но, кроме того, инфляция делает другое, возможно, даже более замечательное предсказание. Как я уже пояснил, из законов квантовой механики следует, что на очень малых масштабах в течение очень короткого времени пустое пространство может оказаться кипящим, бурлящим варевом виртуальных частиц и полей, сильно колеблющихся по величине. Эти «квантовые флуктуации» могут быть важными для определения характера протонов и атомов, но в целом они невидимы на больших масштабах, что является одной из причин, почему их появление столь необычно для нас.

Тем не менее, во время инфляции эти квантовые флуктуации могут обусловить время, когда то, что иначе было бы различными маленькими областями пространства, прекратит свой период экспоненциального расширения. В разных областях инфляция прекращается в слегка (микроскопически) разное время, при разной плотности материи и излучения, что приводит к тому, что энергия ложного вакуума, высвобождаемая в виде тепла в этих разных областях, немного отличается в каждой из них.

Характер флуктуаций плотности, которые получаются после инфляции — возникающих, я должен подчеркнуть, из-за квантовых флуктуаций в остальном пустого пространства — оказывается точно соответствует наблюдаемой картине холодных и горячих пятен на больших масштабах в космическом микроволновом фоновом излучении. Хотя, конечно, схожесть не является доказательством, среди космологов крепнет точка зрения, что, опять же, если это ходит как утка, выглядит как утка и крякает как утка, то это, вероятно, утка. И если инфляция действительно отвечает за все малые колебания плотности вещества и излучения, которые впоследствии приводят к гравитационному коллапсу материи в галактиках, звездах, планетах и людях, то действительно можно сказать, что все мы сегодня существуем благодаря квантовым флуктуациям в том, что, по сути, представляет собой ничто.

Это так замечательно, что я хочу подчеркнуть это снова. Квантовые флуктуации, которые в иных случаях были бы совершенно незаметны, застыли в результате инфляции и после этого проявились как флуктуации плотности, создавшие все, что мы можем видеть! Если все мы — звездная пыль, как я уже писал, то также верно, если случилась инфляция, что все мы, в буквальном смысле, вышли из квантового небытия.

Это столь поразительно контринтуитивно, что может показаться почти волшебством. Но есть, по крайней мере, один аспект всего этого инфляционного жонглирования, который может показаться особенно тревожным. Откуда изначально взялась вся эта энергия? Как микроскопически малая область стала сегодня областью вселенского размера, с материей и излучением, достаточным, чтобы объяснить всё, что мы можем видеть?

В более общем смысле, мы могли бы задать вопрос, как плотность энергии может оставаться постоянной в расширяющейся Вселенной с космологической постоянной или энергией ложного вакуума? В конце концов, в такой Вселенной пространство расширяется в геометрической прогрессии, так что если плотность энергии остается одинаковой, полная энергия в любой области будет расти, поскольку объем области растет. Что случилось с сохранением энергии?

Это пример того, что Гут назвал совершенно «бесплатным обедом». Удивительно, если в рассуждениях о Вселенной учитывать влияние гравитации, то это позволяет объектам иметь как «отрицательную», так и «положительную» энергию. Этот аспект гравитации допускает возможность, что положительная энергия вещества, такого как материя и излучение, может быть дополнена формой отрицательной энергии, которая просто уравновешивает энергию вещества, созданного положительной энергией. При этом гравитация может начать с пустой Вселенной и закончить полной.

Это может казаться неправдоподобным, но на самом деле для многих из нас в этом состоит суть очарования плоской Вселенной. Это также то, с чем вы, возможно, знакомы из физики средней школы.

Рассмотрим подбрасывание мяча в воздухе. Обычно он возвращается вниз. Теперь бросьте его сильнее (если вы не в помещении). Он полетит выше и будет находиться в воздухе дольше, прежде чем вернется. Наконец, если бросить его достаточно сильно, он не вернется совсем.

Он вырвется из гравитационного поля Земли и отправится в космос. Откуда мы знаем, когда мяч вырвется? Мы используем простую задачу расчета энергии. Движущийся объект в гравитационном поле Земли имеет два вида энергии. Одна, энергия движения, называется кинетической энергией, от греческого «движение». Эта энергия, которая зависит от скорости объекта, всегда положительна. Другая составляющая энергии, называемая потенциальной энергией (зависящая от потенциала сделать работу), как правило, отрицательна.

Поэтому мы и считаем суммарную гравитационную энергию объекта, расположенного в покое бесконечно далеко от любого другого объекта, равной нулю, что представляется разумным. Кинетическая энергия, очевидно, равна нулю, и мы определяем, что потенциальная энергия в этой точке равна нулю, так что суммарная гравитационная энергия равна нулю.

Теперь, если этот объект не бесконечно далеко от всех других объектов, а близко к такому объекту как Земля, он начнет падать на него из-за гравитационного притяжения. Когда он падает, он ускоряется, а если врежется во что-то по дороге (например, в вашу голову), он может совершить работу, скажем, расколов ее. Чем ближе он к поверхности Земли, когда начинает опускаться, тем меньше работы он может совершить к тому времени, когда попадает на Землю. Таким образом, потенциальная энергия уменьшается по мере приближения к Земле. Но если потенциальная энергия равна нулю, когда объект бесконечно далеко от Земли, она должна становиться все более и более отрицательной, чем ближе к Земле, поскольку ее потенциал совершать работу уменьшается по мере приближения.

В классической механике, как я определил ее здесь, определение потенциальной энергии произвольно. Я мог бы приравнять потенциальную энергию объекта нулю на поверхности Земли, и тогда было бы некоторые большое число, когда объект бесконечно далеко. Приравнивание полной энергии нулю на бесконечности имеет физический смысл, но это, по крайней мере, на данный момент в нашей дискуссии, лишь условность.

Независимо от того, где установлена нулевая точка потенциальной энергии, замечательно в объектах, которые подвергаются только силе тяжести, то, что сумма их потенциальных и кинетических энергий остается постоянной. Когда объекты падают, потенциальная энергия преобразуется в кинетическую энергию движения, а когда они отскакивают от земли, кинетическая энергия преобразуется обратно в потенциальную, и так далее.

Это дает нам чудесный инструмент для учета того, как быстро нужно бросить что-то в воздухе, чтобы этот объект покинул Землю, поскольку если он в конечном итоге улетит бесконечно далеко от Земли, его суммарная энергия должна быть больше или равна нулю. Затем я просто должен убедиться, что его суммарная гравитационная энергия во время, когда он покидает руку, больше или равна нулю. Поскольку я могу контролировать только один аспект его суммарной энергии, а именно скорость, с которой я выпускаю его из руки — все, что нужно сделать, это найти волшебную скорость, где положительная кинетическая энергия мяча равна отрицательной потенциальной энергии, которую он имеет из-за притяжения к земной поверхности. И кинетическая, и потенциальная энергия мяча строго зависят от массы мяча, которая, следовательно, нейтрализуется, когда эти две величины уравниваются, и можно найти единственную «скорость отрыва» для всех объектов с поверхности Земли, а именно около 7 миль <11,2 км> в секунду, когда суммарная гравитационная энергия объекта точно равна нулю.

Что же все это дает для Вселенной в целом, и инфляции в частности, спросите вы? Что ж, точно такой же расчет, как я только что описал для мяча, брошенного рукой с поверхности Земли, относится к каждому объекту в нашей расширяющейся Вселенной.

Рассмотрим сферическую область нашей Вселенной с центром в месте нашего расположения (в галактике Млечный Путь) и достаточно большую, чтобы охватить много галактик, но достаточно маленькую, чтобы она вполне уложилась в наибольших расстояниях, которые мы можем наблюдать сегодня:


Если эта область достаточно велика, но не слишком, то галактики на ее краю будут удаляться от нас равномерно из-за расширения Хаббла, но их скорости будут гораздо меньше, чем скорость света. В этом случае применимы законы Ньютона, и мы можем игнорировать влияние специальной и общей теории относительности. Другими словами, любой объект подчиняется законам физики, идентичным тем, которые описывают мячи, пытающиеся покинуть Землю, как я только что представил.

Рассмотрим галактику, показанную выше, удаляющуюся от центра распространения, как показано на рисунке. Теперь, как и для мяча с Земли, мы можем спросить, сможет ли галактика вырваться из гравитационного притяжения всех других галактик внутри сферы. И расчет, который мы бы выполнили, чтобы найти ответ, в точности такое же, как при расчете, выполняемом для мяча. Мы просто рассчитываем суммарную гравитационную энергию галактики, основываясь на ее движении наружу (что придает ей положительную энергию), и гравитационном притяжении ее соседей (обеспечивающих отрицательную часть энергии). Если ее суммарная энергия больше нуля, она будет убегать в бесконечность, а если меньше нуля, она остановится и упадет внутрь.

Примечательно, теперь можно показать, что мы можем переписать простое ньютоновское уравнение для суммарной гравитационной энергии этой галактики так, что точно воспроизведем уравнение общей теории относительности Эйнштейна для расширяющейся Вселенной. И член, который соответствует суммарной гравитационной энергии галактики, становится в общей теории относительности членом, описывающим кривизну Вселенной.

Так что же мы тогда найдем? В плоской Вселенной, и только в плоской Вселенной, средняя суммарная ньютоновская гравитационная энергия каждого объекта при расширении точно равна нулю!

Это то, что делает плоскую Вселенную такой особенной. В такой Вселенной положительная энергия движения в точности компенсируется отрицательной энергией гравитационного притяжения.

Когда мы начинаем усложнять, позволяя пустому пространству иметь энергию, простая ньютоновская аналогия с мячом, подброшенным в воздух, становится некорректной, но вывод остается по существу таким же самым. В плоской Вселенной, даже с небольшой космологической постоянной, при условии, что масштаб достаточно мал, чтобы скорости были намного меньше скорости света, ньютоновская гравитационная энергия, связанная с каждым объектом во Вселенной, равна нулю.

Фактически, с энергией вакуума «бесплатный обед» Гута становится еще более драматичным. Когда каждая область Вселенной расширяется до всё больших размеров, она становится все ближе и ближе к плоской, так что суммарная ньютоновская гравитационная энергия всего, что получается, после того как энергия вакуума во время инфляции преобразуется в материю и излучение, становится точно равной нулю.

Но вы все равно можете спросить, откуда берется вся та энергия, которая поддерживает плотность энергии постоянной при инфляции, когда Вселенная растет в геометрической прогрессии? Здесь действует еще один замечательный аспект общей теории относительности. Мало того, что гравитационная энергия объектов может быть отрицательной, но и их релятивистское «давление» может быть отрицательным.

Отрицательное давление еще труднее представить, чем отрицательную энергию. Газ, скажем, в воздушном шаре, оказывает давление на стенки шара. При этом, если он расширяет стенки шара, он совершает над шаром работу. Эта работа заставляет газ терять энергию и охлаждаться. Тем не менее, оказывается, что энергия пустого пространства является гравитационно отталкивающей, именно потому, что она заставляет пустое пространство оказывать «отрицательное» давление. В результате этого отрицательного давления Вселенная фактически совершает работу над пустым пространством, когда оно расширяется. Эта работа идет на поддержание постоянной плотности энергии пространства, даже при расширении Вселенной.

Таким образом, если квантовые свойства материи и излучения, оказалось, с очень ранних времен обеспечивают энергией даже бесконечно малую область пустого пространства, эта область может расти, становясь сколь угодно большой и сколь угодно плоской. Когда инфляция закончилась, мы получили Вселенную, полную вещества (материи и излучения), а суммарная ньютоновская гравитационная энергия этого вещества настолько близка к нулю, насколько только можно себе представить.

Поэтому, когда всё прояснилось, и после века исследований, мы измерили кривизну Вселенной и обнаружили, что она равна нулю. Вы можете понять, почему столь многие теоретики, такие как я, обнаружили, что это не только приносит большое удовлетворение, но и очень многообещающе.

Вселенная из ничего… действительно из ничего.

<<< Назад
Вперед >>>

Генерация: 0.976. Запросов К БД/Cache: 0 / 0
Вверх Вниз