Книга: Возникновение и развитие жизни на Земле

Космическая история углеродных молекул

<<< Назад
Вперед >>>

Космическая история углеродных молекул

Любая обоснованная теория происхождения жизни должна объяснить существование соединения, встречающихся в современных организмах, и соединений углерода, обнаруживаемых в метеоритах и в изверженных горных породах.

Дж. Бернал

В течение долгого времени ученые полагали, что синтез органических соединений как предшественников жизни происходил в условиях ранней Земли и что безжизненная атмосфера планеты состояла преимущественно из Н2, СН4, NH3 c парами Н2О. В этой смеси могли происходить химические реакции синтеза с образованием органических соединений, о чем косвенно свидетельствовали экспериментальные исследования. Первые опыты по получению органических веществ из водород-аммиак-метановой смеси при пропускании через нее электрических разрядов были поставлены в 1953 г. по инициативе американского физикохимика Г. Юри его учеником С. Миллером. Позднее аналогичные результаты были получены советскими исследователями Т. Е. Павловской и А. Г. Пасынским при воздействии на ту же газовую смесь ультрафиолетовых лучей. Реакции этого типа в газовой среде под действием ионизирующей радиации были названы реакциями Миллера-Юри.

Вообще в данной области были проведены многочисленные экспериментальные исследования. Результаты их обычно рассматривались в качестве подтверждения идеи о том, что ультрафиолетовое излучение Солнца и грозовые явления в первичной атмосфере Земли при определенных температурах и давлениях должны были приводить к массовому образованию сложных углеродных соединений, в том числе белков (рис. 10). Однако в свете современных данных подобные представления следует отбросить. Земля принадлежит к внутренним планетам Солнечной системы и образовалась в термодинамических условиях, отличающихся от тех, в которых сформировались гигантские внешние планеты Юпитер и Сатурн. В своих водород-гелиевых атмосферах они действительно содержат СН4, NH3 и другие углеводороды. Наиболее близкой, хотя и не тождественной первичной атмосфере Земли является атмосфера безжизненной Венеры, состоящая преимущественно из CO2. Глубинные газы первичной мантии Земли, выделившиеся при вулканических извержениях и давшие начало первичной атмосфере планеты, содержат главным образом Н2О, CO2, SO2, Н2S, N2. Газы аналогичного состава обнаружены в метеоритах. Таким образом, данные современной геохимии и космохимии не дают никаких указаний на присутствие водорода, аммиака и метана в ранних планетах земной группы.


Наиболее обильный газ первичной атмосферы Земли был представлен СО2. Однако он спонтанно не может превращаться в органические соединения термодинамически менее устойчивые. Скудность водорода или же его быстрая потеря в условиях ранней Земли также резко снижала возможность синтеза органических веществ в атмосфере. На основании изучения физико-химических равновесии в космических условиях Г. Юри пришел к заключению, что при формировании Земли из прото-планетной туманности значительная часть первичного метана газопылевого облака улетучилась, так как повысились температуры в районе образования планет земной группы.

Отмеченное свидетельствует в пользу вывода о том, что основная масса органических соединений возникла за пределами Земли в период, предшествующий ее рождению. В таком выводе нет ничего необычного или парадоксального — ведь в ходе эволюции вещества Солнечной системы сформировались главные породообразующие минералы нашей планета и органические вещества вплоть до самых высокомолекулярных, давших начало первичным жизненным формам.

Таким образом, проблема происхождения органических веществ, как и проблема происхождения самой жизни, имеет прямое отношение к космохимии самой Солнечной системы. В настоящее время благодаря существенному расширению информации о составе различных тел Солнечной системы мы можем значительно глубже заглянуть в химическую историю вещества. Эти данные позволяют прийти к некоторым эмпирическим обобщениям, необходимым для понимания процесса образования органических веществ в протопланетной материи.

1. Земля, планеты и метеориты возникли из вещества Солнца. В пользу этого свидетельствует близость изотопного состава химических элементов, их слагающих. Различие химического состава планет и метеоритов — результат позднейших процессов, связанных с дифференциацией и фракционированием первичной более или менее однородной материи солнечного состава.

2. Возраст Земли, Луны, метеоритов и, вероятно, других планет, по данным ядерной геохронологии, 4,6-4,5 млрд лет. Метеориты, как осколки астероидов, являются древнейшими каменными телами Солнечной системы.

3. Родоначальные тела хондритов — продукты окислительно-восстановительных процессов в протопланетной туманности. У них различная степень окисления. Энстатитовые хондриты наиболее восстановлены, поскольку все железо в них находится в металлическом состоянии, кальций представлен ольдгамитом (CaS), фосфор — шрейберзитом (Fe, Ni, Cr)3P, хром входит в состав добреелита (FeCr2S4), a небольшая часть кремния частично растворена в металлическом железе. Материал обычных хондритов более окислен, и перечисленные минералы встречаются в небольших количествах. Углистые хондриты наиболее окисленные из метеоритов. В них все железо химически связано с кислородом в силикатах и магнетите. Сера присутствует в составе сульфатов.

4. Планеты земной группы и астероиды отличаются химическим составом, что отражает условия дифференциации и физико-химических процессов в период их образования. В близких к Солнцу планетах содержится больше металлического железа, чем в более отдаленных. Меркурий на 3/4 состоит из металлической фазы, Венера и Земля — на 1/3, отдаленный Марс — на 1/4. В поясе астероидов находятся тела преимущественно типа углистых хондритов, т.е. максимально окисленные. В зависимости от гелиоцентрического расстояния планеты земной группы и астероиды представляются телами различной степени окисления. Во время образования Солнечной системы ближе к Солнцу процессы окисления железа (и других веществ) протекали слабо, а по мере удаления от него интенсивность их возрастала.

5. Образование тяжелых радиоактивных и других элементов завершилось непосредственно перед формированием Солнечной системы. В метеоритах и отдельных их минеральных фракциях обнаружены следы вымерших радиоактивных изотопов: 26Al, 129I, 146Sm, 236U, 244Pu, 247Cm. Происхождение Солнечной системы связано с происхождением химических элементов. Период времени между окончанием естественного ядерного синтеза и возникновением твердых тел в Солнечной системе оценивается примерно в 50-100 млн лет. Именно в этом промежутке при охлаждении солнечного газа образовались мелкие частицы и капельки как продукты конденсации, которые в дальнейшем послужили строительным материалом для планет земной группы и метеоритных тел.

6. Вся Солнечная система химически дифференцирована. Ее тела изменяют свой состав в зависимости от гелиоцентрического расстояния, что является отражением установившейся определенной химической зональности протопланетной туманности в период ее образования. Так, если мы учтем главные планетные компоненты в виде следующего ряда: Fe-(0, Si, Mg)-H20-CH4, то по мере возрастания расстояния от Солнца в соответствующих телах увеличивается содержание компонентов слева направо. Ближайший к Солнцу Меркурий содержит преимущественно два первых компонента, в углистых хондритах — астероидах все железо окислено и уже содержится заметное количество H2О. Большая часть спутников гигантских планет покрыта льдом (Н2О), а далекий Плутон состоит из верхней оболочки, сложенной метаном (СН4).

Указанные положения, основанные на современном космохимическом материале, позволяют прийти к общему заключению о том, что происхождение Солнечной системы в первую очередь было связано с физико-химическими процессами в широком смысле слова. Эти процессы зависели от гелиоцентрического расстояния и степени охлаждения вещества в определенной зоне туманности.

В результате усилий довольно широкого круга исследователей на смену космогоническим гипотезам приходит новая теория, опирающаяся главным образом на данные космохимии и учитывающая физико-химические процессы при охлаждении первичной солнечной туманности, которые привели к химической неоднородности различных тел Солнечной системы,

Формирование химического состава Земли и планет определялось последовательной конденсацией элементов и их соединений в порядке, обратном их летучести, — из газовой системы приближенно солнечного состава: сперва тугоплавких, затем труднолетучих и наконец наиболее летучих элементов и их соединений. Температуры конденсации элементов и их соединений из газа солнечного состава при охлаждении ниже 2000 К были вычислены по уравнениям химической термодинамики Э. Андерсом, Дж. Ларимером, Л. Гроссманом, Дж. Льюисом и другими авторами. В широких пределах возможных давлений первыми выделяются капли железа при температуре 1500 К и ниже, затем силикаты магния (Mg2SiO4, MgSiO3), сульфиды (FeS). В конце, ниже 200 К, конденсируются такие вещества, как вода (лед) и ртуть. Результаты этих расчетов следует принимать как первое приближение к решению химической эволюции протопланетной туманности. В действительности в ней происходили сложные процессы взаимодействия между всеми химическими элементами таблицы Менделеева, а также между ранее выделившимися конденсатами и окружающей средой газовой фазы.

В самом общем виде можно себе представить, что образование планет совершалось в два этапа. Первый этап знаменовался охлаждением и конденсацией вещества газовой туманности. В связи с разной скоростью остывания в зависимости от гелиоцентрического расстояния туманность в отдельных зонах приобрела различный химический состав. Эта неоднородность увеличивалась под влиянием солнечных лучей, которые отбрасывали легкие газы в периферическую часть Солнечной системы, в область формирования гигантских планет. Второй этап — это процесс аккумуляции конденсированных частиц в протопланеты. Можно допустить, что оба этапа не были разделены сколько-нибудь значительным промежутком времени. Аккумуляция в определенных участках протопланетной туманности началась тогда, когда конденсация еще не завершилась.

Неясным еще остается вопрос о последовательности аккумуляции протопланетных частиц. Ряд геохимических и физических данных указывает скорее в пользу гетерогенной аккумуляции планеты, когда последовательность аккумуляции повторяла последовательность конденсации. В этом случае верхние горизонты первичной Земли оказались сложенными самыми последними конденсатами солнечной туманности. Центральная часть ядра Земли образовалась при аккумуляции металлического железа, которое покрылось затем конденсатами в виде смеси металла, силикатов и троилита. Позже всех на поверхность растущей Земли поступил материал, близкий по составу к углистым хондритам, обогащенный летучими и органическими веществами.

На последних стадиях остывания солнечной туманности происходило массовое образование органических соединений в области формирования планет земной группы, астероидного пояса и, вероятно, очень обширного пространства в целом, включая область формирования комет.

В связи с повышенной распространенностью водорода в первичной туманности возникали простейшие его соединения с углеродом и азотом. Поскольку наиболее стабильной формой углерода был СО, то по мере охлаждения солнечной туманности происходили следующие реакции:


В отдельных областях протопланетной туманности, очевидно в области формирования гигантских планет, куда давлением солнечной радиации были перенесены легкие молекулы, появлялись H2, CH4 NH3, Н2О. При сочетании этих компонентов могли совершаться реакции типа Миллера-Юри под влиянием ионизирующей радиации, что приводило к образованию многочисленных органических соединений. Однако роль солнечной радиации как ионизирующего фактора, по всей вероятности, была ничтожной. Зараженная пылью протопланетная туманность была непрозрачной для ультрафиолетового света.

Тем не менее можно утверждать, что в ранней Солнечной системе существовали мощные источники радиации, вызывающие фотохимические реакции. К ним относятся повсеместно рассеянные радиоактивные изотопы, находящиеся как в газовой, так и в твердых пылевых фазах первичной туманности. Современная радиоактивность материала Солнечной системы определяется главным образом наличием изотопов 232Th, 235U, 238U, 40К, которых 4,5 млрд лет назад было значительно больше, например 235U было почти в 80, а 40К в 10 раз больше, чем сейчас. Кроме того, в период формирования планет и родоначальных метеоритных тел, возникших в связи с завершением процессов ядерного синтеза, присутствовали сильно радиоактивные изотопы. Однако они вскоре вымерли, поскольку обладали периодом полураспада в пределах 1-100 млн лет. Некоторые из вымерших радиоактивных изотопов представлены в табл. 8.

Учитывая эти обстоятельства, нетрудно заключить, что сама естественная радиоактивность как наследство болев древней космической эпохи синтеза нуклидов в виде альфа-, бета- и гамма-излучений могла и должна была ионизировать окружающую среду, стимулируя многие химические реакции, в том числе синтез органических соединений. Таким образом, само веществе, законы сил, заложенных в атомах, включая свойства ядер и электронных оболочек, определили в исторической последовательности оптимальную обстановку для создания высокомолекулярных органических соединений.

По мере выделения из газовой фазы твердых частиц при охлаждении солнечной туманности и реакций этих частиц с оставшейся газовой средой возникали также определенные соединения, которые явились хорошими катализаторами многих химических реакций. Органические соединения, найденные в метеоритах, образовывались преимущественно путем химических реакций между Н, СО и простейшими соединениями N. Наиболее вероятны в этих условиях реакции типа Фишера-Тропша. В общем виде их можно записать так:

nCO + (2n + 1)H2 ? CnH2n+2 + nH2O.

Реакции этого типа протекают даже в благоприятных термодинамических условиях очень медленно, но они резко ускоряются в присутствии катализаторов.


На последних стадиях остывания солнечной туманности, когда основные тугоплавкие компоненты (металлическое железо, силикаты, окислы и др.) уже конденсировались в виде пылевых частиц, происходили процессы гидратации ранее выделившихся силикатов (преимущественно оливина) и образования совместно или позже органических соединений. При температурах ниже 500 К шли реакции гидратации между оливином и парами воды:

4(Mg, Fe)2SiO4 + 4H2O + 2CO2 ? 2(Mg, Fe)2SiO4 + (Mg, Fe)6(OH)8Si4O10 + ...

Продукты этих реакций в виде гидратированных силикатов, магнетита и карбонатов действительно слагают основную массу хондритов типа C1 в качестве породообразующих минералов. По данным разных методов, типичные минеральные ассоциации углистых хондритов формировались в интервале температур 300-430 К.

Таким образом, можно заключить, что ассоциация органического вещества с низкотемпературными минеральными комплексами — типичное явление в космохимии метеоритов. По структурным данным органические соединения были синтезированы на поверхности минеральных зерен, впоследствии вошедших в состав углистых хондритов. Под микроскопом было замечено, что много органического вещества метеоритов присутствует в виде скругленных флюоресцирующих частиц от 1 до 3 мкм в диаметре. Ядрышки магнетита или гидратированного силиката найдены в центре этих частиц.

Отмеченные выше процессы каталитического синтеза органических соединений в космических условиях подтверждаются также опытными данными. Экспериментальные исследования по моделированию реакций типа Фишера-Тропша в условиях, близких к космическим, были выполнены Д. Иоширо, Р. Хайатсу и Э. Андерсом. Было обнаружено, что когда СО, Н2, NH3 вступают в реакции при температурах 150-500°С в присутствии никеля, алюминия или глинистых минералов в качестве катализаторов, то образуются многие органические вещества, включая аминокислоты. Исследования в этой области, в настоящее время ведущиеся довольно интенсивно, подтверждают ранее полученные результаты. Термодинамические условия формирования органических соединений в остывающей газовой туманности солнечного состава представлены на рис. 11.

Следует отметить, что частицы естественных катализаторов в солнечной туманности обладали первоначально также повышенной радиоактивностью, воздействующей на окружающую среду. Поэтому можно полагать, что синтез органических веществ проходил как под влиянием явлений катализа, так и под воздействием радиоактивности.

Пока еще мало опытов по экспериментальному моделированию синтеза органических веществ под непосредственным воздействием излучений радиоактивных изотопов на определенные газовые смеси, которые близки по составу к предполагаемой туманности. Проводились лишь исследования американских ученых С. Палма, М. Кальвина, С. Понамперумы по облучению смеси СН4, NH3, H2O бета-лучами. В результате происходили реакции, которые привели к образованию алифатических соединений, аденина и аминокислот. Однако особый интерес представляют результаты опытов Д. Гидлея и др. [Gidiey et al., 1982]. Облучая бета-лучами примитивные газовые смеси, эти исследователи установили, что под действием бета-излучения происходит образование асимметричных молекул органических веществ однородного структурного типа, включая аминокислоты и сахара. В связи с этим следует отметить, что одной из фундаментальных особенностей живой материи является оптическая молекулярная асимметрия главных компонентов организмов — белков и нуклеиновых кислот. В состав белков входят только L-аминокислоты. В связи с этим можно предположить, что действие излучений радиоактивных элементов было решающим фактором образования асимметричных молекул органических соединений, которые оказались наиболее подходящими для формирования живого вещества.


По-видимому, синтез органических веществ в древних космических системах мог происходить при определенных дозах ионизирующей радиации. Радиоактивные излучения высокой интенсивности разрушают химические соединения. Поэтому следует допустить, что при общем снижении радиационного фона в период распада вымерших и ныне существующих радиоактивных изотопов был достигнут какой-то оптимум радиоактивного воздействия на исходные вещества, благоприятный для процессов синтеза органических соединений.

Особенности химических и изотопных данных по углистым хондритам показывают, что накануне формирования родительских тел этих метеоритов синтез органических веществ осуществлялся преимущественно путем каталитических реакций типа Фишера-Тропша и в меньшей мере путем реакций типа Миллера-Юри. В частности, это можно видеть при сравнении молекулярных масс-спектрограмм для углеводородов, полученных в результате реакций типа Фишера-Тропша искусственно, и углеводородов метеорита Мурчисон (рис. 12). Обращает на себя внимание хорошее совпадение определенных максимумов для двух образцов.

Учитывая вышеизложенное, нетрудно прийти к заключению, что синтез довольно сложных органических соединений был закономерным этапом в химической эволюции Солнечной системы в канун формирования планет. Возникшие в космических условиях органические вещества вошли в состав многих тел, но лишь на Земле реализовались возможности прогрессивной эволюции. В результате быстро сформировались саморегулирующиеся высокомолекулярные системы — предки первых живых организмов. В метеоритах и их родоначальных телах химическая эволюция оказалась замороженной.

Органические вещества космического происхождения попали на растущую Землю на последних стадиях ее аккумуляции совместно с материалом типа углистых хондритов. Следует при этом отметить, что по ряду геохимических и изотопных данных материал первичной верхней мантии Земли был близок к материалу типа углистых хондритов как источнику воды и других летучих веществ. Все больше выявляется дополнительных данных в пользу этого заключения. В дальнейшем при радиогенном нагреве верхней первичной мантии выделялись газы и пары, давшие начало образованию атмосферы и гидросферы. При этом были вынесены и органические соединения, которые изменились в сторону прогрессивной эволюции, находясь в тесном контакте с твердыми фазами различной степени измельчения — от коллоидных частиц глинистых минералов до крупных камней и глыб как первых продуктов выветривания новорожденной коры планеты. Этот твердый материал отличался повышенной радиоактивностью на ранних стадиях развития нашей планеты.

Однако насколько далеко продвинулась химическая эволюция вещества в космических условиях, мы не знаем. Те углистые хондриты, которые изучены в отношении содержания органики и недавно к нам попали из пояса астероидов, могут рассматриваться лишь как вероятный аналог того материала, который создал верхние горизонты нашей планеты. Но их нельзя считать полностью тождественными первичной верхней мантии Земли.


По-видимому, можно наметить два пути решения проблемы: либо химическая эволюция, начавшись в космических условиях, продолжалась в условиях Земли и в относительно короткие сроки привела к возникновению примитивных живых организмов, либо образование первых сложных молекул ДНК, лежащих в основе наследственности, произошло в космических условиях, а полная реализация возможностей ДНК наступила в первых водоемах нашей планеты, содержащих растворенные органические вещества.

<<< Назад
Вперед >>>

Генерация: 4.405. Запросов К БД/Cache: 3 / 1
Вверх Вниз