Книга: Сознание и мозг. Как мозг кодирует мысли

Зарождение осознанной мысли

<<< Назад
Вперед >>>

Зарождение осознанной мысли

Попробуйте прикинуть, сколько осознанных мыслей у вас было всего: припомните все лица, предметы, сцены, которые можете узнать, все оттенки когда-либо испытанных эмоций, от непреодолимой злобы до легкого злорадства, каждый уголок на карте мира, каждый исторический факт, каждую математическую формулу или каждую сплетню, неважно, правдивую или лживую, которую вы когда-либо слышали или могли услышать, вспомните произношение и значение каждого слова, которое вы знаете или могли знать на любом языке… Бесконечный список! И тем не менее все это может в следующий миг всплыть у вас в сознании. Но как может быть закодирован в нейронном пространстве такой огромный объем разнородной информации? Что представляет собой нейронный код сознания, как он поддерживает столь обширный, практически бесконечный набор идей?

Нейробиолог Джулио Тонони отмечает, что один лишь объем нашего репертуара по части идей уже служит ограничителем для нейронного кодирования осознанных мыслей27. В основе этого кода должна лежать абсолютно невероятная дифференциация: комбинации активных и бездействующих нейронов в глобальном рабочем пространстве должны складываться в миллиарды разных рисунков деятельности. Каждое возможное осознанное состояние психики должно иметь собственный рисунок нейронной активности, отличный от всех прочих. В результате осознанные состояния должны быть четко разграничены: это либо птица, либо самолет, либо Супермен, но никак не все сразу одновременно. Для четкого мышления с мириадами потенциальных мыслей нужен мозг с мириадами потенциальных состояний.

В книге «Организация поведения» (1949) Дональд Хебб уже предложил провидческую теорию относительно того, каким образом кодируются мысли в мозгу. Хебб ввел концепцию «совокупностей клеток» — групп нейронов, которые связаны между собой возбуждающими синапсами и потому сохраняют активность в течение долгого времени после того, как исчезнет внешний стимул. «Любая часто повторяющаяся характерная стимуляция, — предполагал Хебб, — повлечет за собой медленное развитие совокупности клеток, диффузной структуры, объединяющей в себе клетки коры и промежуточного мозга (а также, возможно, базальных ганглиев переднего мозга) и способной в течение краткого времени функционировать как замкнутая система»28.

Входящие в совокупность клеток нейроны поддерживают друг друга, посылая возбуждающие импульсы. В результате на ограниченном участке нейронного пространства возникает всплеск активности. А поскольку такие местные совокупности клеток могут активироваться независимо друг от друга и в самых разных частях мозга, в результате мы имеем комбинаторный код, с помощью которого можно изобразить миллиарды состояний. Так, любой видимый объект можно представить как комбинацию цвета, размера и фрагментов геометрических фигур. Записи деятельности коры головного мозга подтверждают: образ, к примеру, огнетушителя закодирован в мозгу как сочетание активных «участков», включающих в себя несколько сот нейронов каждый и составляющих репрезентацию каждой отдельной части огнетушителя (рукоятка, баллон, шланг и т. д.)29.

В 1959 году пионер исследований в области искусственного интеллекта Джон Селфридж ввел в обиход еще одну полезную метафору — пандемониум30. Селфридж представлял мозг в виде иерархии специализированных «демонов», каждый из которых предлагает на пробу собственную интерпретацию входящего образа. Его правоту подтвердили три десятка лет исследований в области нейрофизиологии, и в частности, открытие зрительных клеток, настроенных на линии, цвета, глаза, лица и даже американских президентов и голливудских звезд. В модели Селфриджа демоны перекрикивались, сообщая друг другу избранные ими интерпретации в соответствии с тем, насколько им соответствовал воспринимаемый образ. Их крик последовательно проходил через все более абстрактные механизмы, нейроны реагировали на все более абстрактные качества образа — так, например, если три демона кричали о наличии глаз, носа и волос, то проснувшийся четвертый демон кодировал все это как лицо. Прислушиваясь к наиболее громко озвучиваемым вариантам, система принятия решений могла сформулировать мнение о наблюдаемом объекте — оно же сознательное восприятие.

Позже к пандемониум-модели Селфриджа было сделано одно важное дополнение. Изначально передача данных в ней шла по иерархии строго вверх: демоны кричали только стоящему над ними демону, однако стоящий выше демон никогда ничего не кричал ни стоящим ниже, ни даже другим демонам своего уровня. На практике же нейронные системы не просто передают информацию наверх, но и общаются между собой. В коре головного мозга есть масса петель и обоюдонаправленных проекций31. Друг с другом разговаривают даже отдельные нейроны: если нейрон ? сигналит нейрону ?, то нейрон ?, скорее всего, сигналит нейрону ?32. Связанные между собой нейроны любого уровня поддерживают друг друга, а нейроны, находящиеся на вершине иерархии, могут связываться с подчиненными, поэтому объемы данных, идущих сверху вниз, как минимум не уступают объемам данных, идущих снизу вверх.

Имитации и математические модели реалистичных «нейросетевых» моделей с большим количеством таких петель показывают, что у всех у них есть одно очень полезное свойство. Стоит возбудиться подгруппе нейронов, и вся группа самоорганизуется и приходит в аттракторное состояние: группы нейронов генерируют воспроизводимый рисунок активности, который остается стабилен в течение долгого времени33. Как и предполагал Хебб, взаимосвязанные нейроны склонны к образованию стабильных совокупностей клеток.

В качестве кодовых схем эти воспроизводящиеся сети обладают еще одним достоинством: они зачастую приходят к консенсусу. В нейронных сетях с повторяющимися связями нейроны, в отличие от демонов Селфриджа, не просто кричат друг другу, а договариваются между собой и приходят к единой интерпретации воспринимаемой сцены. Наиболее возбужденные нейроны взаимно поддерживают друг друга и постепенно подавляют прочие альтернативные интерпретации. В результате им удается восстановить недостающие детали и отсечь помехи. После нескольких итераций закодированная нейронами картина представляет собой очищенную и интерпретированную версию воспринятого образа. Картина эта отличается большей стабильностью и устойчивостью к помехам, последовательна внутри себя и явственно отличима от прочих аттракторных состояний. Фрэнсис Крик и Кристоф Кош описывают эту репрезентацию как победившую в соревновании «нейронную коалицию», причем предполагают, что она является прекрасным двигателем для сознательной репрезентации34.

Слово «коалиция» подводит нас еще к одному важному аспекту, связанному с нейронным кодированием: нейронный код должен быть тесно интегрирован35. Все моменты сознательного восприятия сливаются для нас в одну общую картину. Рассматривая «Мону Лизу» Леонардо да Винчи, мы ведь видим не какого-нибудь там безрукого потрошеного Пикассо с витающей в воздухе улыбкой Чеширского кота и плывущими отдельно глазами. Мы воспринимаем все эти элементы (и множество других в придачу — название, смысл, связь картины с тем, что мы знаем о гениальном да Винчи) и каким-то образом соединяем их в целое. И все-таки каждый из этих элементов изначально обрабатывается конкретной группой нейронов, а сами группы расположены на поверхности вентральной зрительной коры на расстоянии в несколько сантиметров друг от друга. Как же они поддерживают связь?

Вариантов несколько — например, нейроны могут образовывать крупные совокупности. В этом им помогают центры связи высших секторов коры. Эти центры, которые нейробиолог Антонио Дамасио зовет «зонами конвергенции»36, особенно широко распространены в префронтальной коре, однако встречаются и в других секторах передней височной доли, нижней теменной доли и так называемого предклинья, участка медиальной поверхности мозга. Все эти центры отправляют и получают бесчисленное количество сообщений, поддерживая связь с массой отдаленных областей мозга. Таким образом, нейроны этих областей интегрируют информацию в пространстве и времени. Затем многочисленные модули восприятия вырабатывают единую адекватную интерпретацию полученных данных («соблазнительная итальянка»). Эту глобальную интерпретацию можно снова передать в области, из которых были изначально получены сенсорные сигналы. В результате мы получаем единую целую картину. В глобальной передаче данных задействованы нейроны с длинными аксонами, передающими информацию снизу вверх, от префронтальной коры и связанной с ней высокоуровневой сети областей в сенсорные области более низкого уровня, и за счет этого создаются условия, необходимые для возникновения единого состояния сознания, одновременно дифференцированного и интегрированного.

Нобелевский лауреат Джеральд Эдельман назвал передачу данных туда-обратно «повторным входом»37. Опыт построения моделей нейронных сетей позволяет предположить, что повторный вход обеспечивает возможность сложного вычисления оптимальной статистической интерпретации зрительного образа38. Каждая группа нейронов исполняет роль специалиста-статистика, а для того чтобы объяснить свойства получаемой информации, эти группы сотрудничают между собой39. Так, например, «специалист по теням» решает, что темный участок на картине может быть тенью, но только лишь в том случае, если свет падает сверху слева. «Специалист по освещению» соглашается и, вооружившись этой гипотезой, объясняет, почему освещена верхняя часть изображенных предметов. Тут является третий эксперт, который говорит, что с учетом этих двух факторов оставшаяся часть изображения походит на лицо. И так они обмениваются данными до тех пор, пока каждый фрагмент изображения не получит предварительную интерпретацию.

<<< Назад
Вперед >>>

Генерация: 5.700. Запросов К БД/Cache: 3 / 1
Вверх Вниз