Книга: Чума

3.8. Факторы вирулентности

<<< Назад
Вперед >>>

3.8. Факторы вирулентности

В противоположность токсинам, постоянным структурным компонентам клетки чумного микроба, его видовым атрибутам, факторы вирулентности относятся к числу фенотипических признаков, которые начинают проявляться в инкубационном периоде и достигают "расцвета" в разгар болезни [Butler T., 1983]. Здесь необходимо подчеркнуть, что хотя большая часть известных сейчас детерминантов вирулентности чумного микроба присуща также Y. pseudotuberculosis и Y. enterocolitica, их экспрессия осуществляется по своим, характерным для каждой иерсинии, законам. Учитывая сказанное, легко понять, почему, например, чумной микроб и его "двойник" (Y. pseudotuberculosis, вызывают столь непохожие заболевания.

Считаю по-прежнему [Домарадский И. В. 1966], что основное отличие авирулентных штаммов чумного микроба от вирулентных заключается в способности последних распространяться и безудержно размножаться в организме. Это отличие между вирулентными и авирулентными штаммами можно иллюстрировать, в частности, результатами исследований G. M. Fukui и соавт. [1957]. Если микробы, выращенные при 26 (С, вводились морским свинкам аэрогенным путем, то большая часть авирулентных клеток отмирала в первые 6 ч.; элиминация клеток продолжалась и в последующем, но с меньшей скоростью. При аналогичных условиях число вирулентных клеток в первые часы также уменьшалось, но затем оно возрастало вплоть до гибели животных. Однако начальное отмирание вирулентных клеток не отмечалось, если для заражения брали культуры, изолированные от животных или выращенные при 37 (С на агаре из вытяжки сердца с добавлением глюкозы и сульфита.

После долгих поисков, T. Burrows [1957] пришёл к ставшему общепризнанным выводу о том, что характерными признаками вирулентных штаммов чумного микроба являются: 1) наличие капсулы и V- и W-антигенов, 2) способность синтезировать пурины и 3) образование пигментированных колоний на среде с гемином. Позднее к ним были отнесены пестициногенность и неспособность расти на средах при 37 (С в отсутствии ионов кальция. С тех пор этот перечень факторов вирулентности не изменился. Только совсем недавно было предложено включить в него "pH-6-антиген" [Lindler L. E. et al., 1990], наличие которого раньше никак не связывали с вирулентность иерсиний. Однако постепенно стали накапливаються данные о том, что на самом деле проблема вирулентности гораздо сложнее. В первую очередь, мы имеем в виду сообщения о том, что штаммы, вызывающие вспышки чумы у людей, и штаммы, циркулирующие в природных очага, по наличию известных факторов вирулентности не отличаются друг от друга. Следовательно, есть еще какие-то другие, о природе которых можно только гадать.

3.8.1. Потребность в ионах кальция и зависимость от температуры

Этот раздел начинается с вопросов о потребности иерсиний в ионах кальция, поскольку она уникальна для прокариотов.

Как установили K. Higuchi и соавт. [1959] для роста при 37 (С (но не 26 (С) в синтетической среде, содержащей оксалат магния (он связывает ионы кальция), вирулентные клетки чумного микроба не растут. В отличие от них авирулентные клетки обходятся без кальция (исключение составляет штамм EV). Однако потребность в Ca2+ появляется даже у авирулентных штаммов, если концентрация Mg2+ в синтетической среде падает с 0,02 до 0,0025 М. Очевидно, у авирулентных клеток потребность в Ca2+ покрывается достаточным количеством Mg2+. 11 С легкой руки Gоguen J. и соавт. [1984], процессы, протекающие в клетках иерсиний на средах без кальция при температуре 37 (С, теперь принято называть "low calcium response" или сокращенно "LCR".

По данным R. J. Zahorchak и соавт. [1979], при 37 (С на среде без кальция резко падает мембранный заряд клетки и еще до прекращения синтеза белка выключается образование ДНК и РНК, причём при добавление кальция рост не восстанавливается.

Многочисленными работами доказано, что зависимость иерсиний от наличия кальция неразрывно связана с присутствием у них плазмиды "вирулентности" (pCad), о которой говорилось выше. На этой плазмиде за зависимость от наличия кальция ответственна область, лежащая между генами lcrD и yscA-L, равная примерно 18,5 тыс. пар оснований, т. е. четверти всей плазмиды [Holmstr(m A., 1995].

Потребность в ионах кальция (сложный процесс, в реализации которого принимает участие большое число различных LCR-белков. Однако их набор у каждой из иерсиний весьма специфичен и "беднее" всего он у Y. pestis (см. ниже). Так или иначе, но все LCR-белки образуются в течение 2 ч. после прекращения деления клеток.

Ионы кальция, взаимодействуя с один из LCR-белков, а именно YopN, передают внутрь клетки сигнал к инактивации репрессора (репрессоров), препятствующего экспрессии других белков, т. е. выступают в роли негативного регулятора транскрипции. В то же время температура 37 (С действует как позитивный регулятор через посредство LcrF, гомологичного активатору транскрипции AraC E. coli [Holmstr(m A, 1995]. Здесь уместно поэтому заострить внимание на особой роли температурного фактора в физиологии чумного микроба, которую можно считать для него очень характерной (у других иерсиний она так не выражена).

Впервые обратили внимание на особую роль температурного фактора G. Hills и E. Spur [1952], столкнувшиеся с тем, что потребность чумного микроба в источниках питания оказалась гораздо выше при 37 (С, нежели при 28 (С. В последующем значение температуры было подтверждено другими исследователями, в частности, изучавшими ферментативную активность Y. pestis [Домарадский И. В. и др., 1974]. Именно при этом был выявлен необычный феномен (отрицательное влияние глюкозы ("токсичность") на рост вирулентных клеток при аэрации и температуре 37 (С (рис. 10), что не имело место в присутствии ксилозы, галактозы или маннита. Но особенно заметно перепады температуры сказываются на вирулентности, что в конечном итоге и привело к возникновению понятия о LCR. Однако последнее, по нашему мнению, отодвигает влияние температуры на второй план, хотя для возникновения LCR температура не менее важна, чем нехватка кальция. Ведущую роль температурного фактора в вирулентности чумного микроба можно иллюстрировать следующими примерами. заимствованными из работ, о которых теперь мало кто помнит.

По данным G. M. Fukui и соавт. [1960], из числа известных тогда детерминантов вирулентности, "главные" имели лишь культуры, которые выращивали при температуре 37 (С; они же обладали наиболее высокой вирулентностью (табл. 16). Однако, когда культуры, выращенные при 5 (С, подвергали инкубации при 37 (С и аэрации, то уже через 2 ч. вирулентность бактерий значительно увеличивалась, а через 8 ч. возрастала на два логарифма. Все это протекало на фоне отсутствия заметного увеличиения числа жизнеспособных клеток, что говорило о фенотипической модуляции вирулентности. Сходные результаты были получены и в опытах с морскими свинками.

В работе H. B. Naylor и соавт. [1961] описаны условия, необходимые для восстановления вирулентности у "5-градусных" культур: инкубация в течение 6 ч. с аэрацией при 37–41 (С; наличие в среде ряда аминокислот, сбраживаемого сахара (ксилозы) и неорганического фосфата, присутствие глюконата, pH среды в пределах 5,5–8,4. Немаловажно, что к числу "восстанавливающих" факторов ионы кальция не относились!

Как уже указывалось [Домарадский И. В., 1993], на основании многочисленных данных создается впечатление, что столь поразительная связь между температурой и свойствами чумного микроба может быть следствием тех двух фаз существования его в природе, которые постулировал М. Балтазар [1964]; находя у теплокровных животных все, в чем он нуждается, микроб теряет свою относительную неприхотливость, необходимую для персистенции во внешней среде, и переключает метаболизм на синтез факторов, позволяющих противостоять защитным силам организма. Поэтому приходится сожалеть, что, интимные механизмы поразительного влияния температурного фактора на различные стороны физиологии чумного микроба выпали из поля зрения исследователей и остаются нерасшифрованными. По нашему мнению, здесь следовало бы в первую очередь попытаться выяснить, в чем заключается специфика регуляции ферментативной активности чумного микроба, и осуществляется ли она при критических ситуациях путем изменения количества ферментов ("дирижеров" ключевых реакций) на уровне транскрипции или происходит за счет изменения их активности, т. е. степени изменения каталитического потенциала клетки.

3.8.2. VW-антигены (Vwa)

У всех иерсиний были обнаружены V- и W-антигены, но сначала их нашли у чумного микроба [Burrows T. W., Bacon G. A., 1956b],

Как считают, оба эти антигена вместе с FI или независимо от неё обладают антифагоцитарным действием и рассматриваются поэтому как факторы вирулентности чумного микроба. Фагоцитозу могут противостоять даже авирулентные VW+ штаммы, лишенные FI, а сыворотка против этих антигенов устойчивость чумного микроба к фагоцитозу снижает [Burrows T. W., Bacon G. A., 1956a]. C другой стороны, имеются указания на то, что V-антигенучаствует в процессах иммуносупрессии путем торможения синтеза цитокинов [Nakajama R. et al., 1995] Недавно получены также весьма убедительные доказательства значения V-антигендля иммунитета против чумы. Выяснилось, в частности, что рекомбинантный V-антиген защищает мышей от заражения вирулентным штаммом чумного микроб [Leary S. et al., 1995].

Что касается W-антигена, то он может играть роль порина, способствующего выходу V антигена в окружающую среду, но в общем о нём мало что известно.

По данным W. D. Lawton и соавт.[1963], V-антигенявляется белком с мол. массой 90 кДа, а W представляет собой липопротеин с мол. массой 145 кДа. Оба антигена стабильны как при 60(С (30 минут), так и в замороженном состоянии, но инактивируются при 80(С, длительном хранении при 5(С и лиофилизации. В процессе диализа против дистиллированной воды разрушается только W-антиген.

V- и W-антигены содержатся в цитоплазматической фракции микроба. S. C. Straley и R. Brubaker [1982] изолировали пептиды, связанные с этими детермиантами вирулентности, путем разрушения клеток и разделения компонентов цитоплазмы и внешней мембраны. Благодаря тому, что эти антигены на поверхности не экспрессируются, предполагают, что с клеточными мембранами клеток хозяев они не взаимодействуют.

Подобно другим белкам, о которых говорилось в предыдущем разделе, V- и W-антигены кодируются плазмидой pCad и экспрессируются только во время стаза; их синтез при делении клеток в присутствии избытка ионов кальция подавляется. Тем не менее считают, что после захвата бактерий фагоцитами оба антигена синтезироваться все же могут, так как в фаголизосомах концентрация кальция достаточно низка [Pollack et al., 1986].

Синтез V-антигена кодируется геном lcrV, входящим в состав оперона lcrGVH — yopBD, расположенном на плазмиде "вирулентности" [Bergman T. et al.,1991; Perry R. D. et al., 1986;].

По данным S. Price и соавт. [1991], V-антиген является регуляторным бифункциональным белком, С одной стороны, он необходим для кальций-зависимого роста чумного микроба, а с другой (для максимальной экспрессии LCR-генов вирулентности.

Говоря о Vwa, нельзя не вернуться к другим белкам, связнным с LCR, которые также относят к белкам вирулентности иерсиний. Все они относятся к числу поверхностных белков и выполняют разные функции в патогенезе инфекций: сигнализируют микробным клеткам о наличии ионов кальция (YopN) и изменении температуры (LcrF), выполняют ферментативные и регуляторные функции (YpkA, YopH), образуют поры в соответствующих клетках-мишенях и способствуют перемещению в них других белков ((YopK,YopB,YopD), дают цитотоксический эффект (YopE), нарушают агрегацию тромбоцитов (YopM) и др. [Guan K., Dixon J, 1990; Leung K. Y. et al.,1990; Bliska J. B. et al., 1991; Forsberg A. et al., 1991; Galyov E. et al., 1993; Holmstr(m A, 1995]. Из числа белков, кодируемых плазмидой pCad и участвующих в LCR, у чумного микроба выявлено 11, среди которых превалируют YopM и YopN [Leung K. Y. et al., 1990]. Одна из причин, с которой может быть связан относительно небольшой набор LCR-белков у чумного микроба, рассматривается ниже.

Поскольку синтез всех LCR-белков неразрывно связан с pCad, необходимо заострить внимание на очень важном факте, который может помочь лучше понять, от чего зависят флюктуации вирулентности чумного микроба. Мы имеем в виду данные R. Zsigray и соавт. [1983,1985], показавших, что у штаммов Y. pestis, получивших F' lac, потеря вирулентности обусловливается встройкой pCad в хромосому. Встройка носит обратимый характер: pCad возвращается в автономное состояние, когда F' lac элиминируется из клеток.

3.8.3. Фракция I (капсульный антиген)

Подобно многим другим микроорганизмам чумной микроб in vivo и при определенных условиях in vitro образует капсулу или оболочку. Однако, как подчеркивал T. Burrows (1960a), по вопросу о том, идентична ли капсула, образуемая микробом в организме, капсуле, которая образуется им на искусственных питательных средах, мало что известно.

Начало интенсивному изучению капсульного вещества было положено работами. E. E Baker и соавт. [1952]. которые для её извлечения использовали водносолевой экстракт сухих клеток чумного микроба.12

На искусственных питательных средах максимальное количество FI в форме видимой капсулы накапливается при 37(С. При температуре 26–28 (C, оптимальной для роста чумного микроба, образование FI выражено значительно слабее.

По многочисленным данным, штаммы FI- легко селекционировать из популяции FI+ при помощи специфической антисыворотки. Такие штаммы не образуют видимой капсулы, не агглютинируются капсульной антисывороткой, не высвобождают FI после обработки их ультразвуком и не вызывают образования соответствующих антител.

Помимо явных FI+ и FI- штаммов встречается еще третий тип штаммов, обладающих свойствами как первого, так и второго типа (штаммы FI(). Штаммы FI(не способны к образованию видимой капсулы ни на питательных средах, ни в организме животных. Однако такие штаммы способности к синтезу FI полностью не лишены, о чем можно судить с помощью реакции преципитации в геле или по индукции ими специфических антител. Два таких штамма были получены путем селекции, а один выделен от человека, умершего от чумы (штамм Bryan [Burrows T. W., Bacon, G. A., 1958].

По химической природе FI оказался белковым агрегатом с мол. массой 300 кДа, состоящим из двух компонетов с одинаковыми антигенными свойствами. Один из них, изоэлектрическая точка которого лежит при рН 4,6, соединен с олигомерным галактаном, т. е представляет собой гликопротеин, тогда как второй, с pI 4,8, является чистым белком. Оба компонента распадаются на субъединицы с мол. массами от 15 до 17 кДа [Bennet L., Tornabene T., 1974] и легко образуют исходный, высокомолекулярный комплекс. Упаковка молекулы FI происходит за счет водородных и гидрофобных взаимодействий без образования дисульфидных связей [Наумов А. В., Самойлова Л. В., 1995]. B-клеточный эпитоп, доступный для антител, выглядит как гидрофильная петля на поверхности полимерной молекулы [Zav'yalov V. et al., 1995a].

Что касается генетического контроля синтеза FI, то, по данным ряда авторов, например О. А. Проценко и соавт. [1983], он осуществляется "крупной" плазмидой (pFra), молекулярная масса которой колеблется от 60 до 65 мДа. Фрагмент pFra Y pestis EV, непосредственно связанный с синтезом FI, (оперон fI (недавно был детально изучен. Он оказался относительно небольшим (около 4 мДа) и включает в себя 4 гена (рис. 11). Клетки кишечной палочки, несущие рекомбинантную плазмиду с цельным опероном fI, образуют капсулу, содержащую FI [Karlyshev A. et al., 1996]. Примечательно, что эти клетки обладают способностью связывать интерлейкин 1((hiL?1(), причём ответственным за связывание является белок CaFIA; этот факт должен учитываться при анализе роли капсульного вещества в патогенезе чумы [Zav'yalov V. et al., 1995b].

Казалось бы, все ясно. Однако у штамма Yreka в образовании FI может участвовать плазмида с мол. массой 13 мДа, отсутствующая у других штаммов чумного микроба [Tsukano H et al.,1986]. Чтобы убедиться в этом, японские авторы прибегли к помощи комбинации элиминирующих плазмиды агентов и получили клетки штамма Yreka, которые наряду с указанной и еще четырьмя плазмидами утратили поверхностный капсульный материал [Tsukano H., 1989]. Но полученные клетки оказались неоднородными; одни были лишены FI, a другие напоминали штаммы FI(и содержали FI, но только в цитоплазме. Поскольку оба типа клеток были бесплазмидными, авторы пришли к выводу, что именно плазмида с мол. массой 13 MД связана с появлением поверхностного капсульного антигена и не имеет отношения с синтезу внутриклеточного антигена. Дополнительные опыты дали указание на наличие каких-то других генетических элементов, кодирующих образование внутриклеточной FI.

Вопрос о генетическом контроле синтеза FI окончательно решеным считать нельзя. Помимо сказанного и собственных неопубликованных данных, в этом нас убеждают также результаты исследований других авторов, в частности, M. S. Zhao и соавт. [1990]. По мнению последних, соответствующие гены располагаются на транспозоне. Иначе трудно объяснить тот факт, что у одних штаммов чумного микроба гены FI связаны с крупной плазмидой, а у других (с хромосомой. И еще один вопрос, на который предстоит ответить: если синтез FI действительно связан со столь небольшим фрагментом pFra, как утверждают A Karlyshev и соавт., то что же кодирует остальная часть этой неконъюгативной плазмиды? Мышиный токсин, о чём пишут другие авторы? Как нам кажется, ответы на поставленные вопросы принципиально важны, поскольку они помогут понять причину, породившую сомнения в FI, как в одном из факторов вирулентности чумного микроба [Davis K. J. et al., 1996].

3.8.4. pH6-антиген"

pH6-антиген (pH6Ag) был описан S. Ben-Efraim и соавт. [1961]. Они показали, что этот антиген образуется чумным микробом in vitro и in vivo при 37 (С и рН ниже 6,7, т. е. при условиях которые сходны с таковыми в фаголизосомах и абсцессах. По данным L. Bichowsky-Slomnicki и S. Ben-Efraim [1963], этот антиген сообщает клеткам чумного микроба большую стабильность в суспензиях, агглютинирует эритроциты и обладает цитотоксичностью, что может иметь непосредственное отношение pH6Ag к вирулентности, поскольку мутации в хромосомном структурном (psaA)или регуляторном (psaE) гене приводят более чем к 100-кратному увеличению ЛД50 [Linder L. E. et al., 1990].

pH6Ag образует фимбриоподобные поверхностные структуры, построенные из субединиц с мол. массой 15 кДа. Их образование индуцируется внутри макрофагов. Небезынтересно, что в отличие от гена psaA, "работа" гена psaE не зависит от температуры и pH среды. Одной из особенностей этих структур (белка PsaA является их способность играть роль Fc-рецепторов; они связываются с нормальными IgG человека, что приводит к возникновению псевдоиммунных комплексов, и, как следствие, к антигенной мимикрии [Zav'yalov V. et al, 1996]. Возможно, что утрата вирулентности в опытах L. E. Linder и соавт. [1990] обусловливалась именно тем, что их мутанты не могли "обманывать" иммунную систему организма, как это делают неизмененные штаммы.

С помощью ДНК гибридизации и иммуноблотинга антиген, подобный pH6-антигену, выявлен у возбудителя псевдотуберкулёза [Linder L. E., Tall B. D., 1993], у которого он также связан с вирулентностью [Muhr J., 1993; цит. по Holmstr(m A., 1995]. Кроме того, 44 %-гомология с pH6-антигеном была обнаружена у Myf-белка (мукоидного фактора) Y. enterocolitica [Iriate M. et al., 1993]. В то же время, хромосомные локусы, кодирующие pH6-антиген и Myf-белок, имеют сходство с локусами Pap-пилей кишечной палочки (papC papD, ответственными за транспорт и сборку субъединиц пилина, что интересно с эволюционной точки зрения.

3.8.5. Потребность в железе и пигментация

При изучении потребностей в источниках питания авирулентного штамма FS и его вирулентного мутанта MP6 было замечено [Jackson S., Burrows T. W., 1956], что оба штамма на синтетической среде с гемином образуют пигментированные колонии. После 4-дневной инкубации от пигментированных колоний (Р+) отщепляются вторичные непигментированные колонии (Р-), которые остаются непигментированными и в последующих генерациях (превращение штаммов Р- в Р+ никогда не происходит).

Как установил [Burrows T. W., 1960 a, b], превращение штамма Р+ в штамм Р- сопровождается потерей вирулентности для мышей, даже если штамм Р(сохраняет способность к образованию других детерминантов вирулентности.

Потеря вирулентности, связанная с утратой способности образовывать пигментированные колонии на среде с гемином, оказалась обратимой и полностью восстанавливалась, если штамм P- (c другими детерминантами вирулентности) вводили мышам вместе с нетоксичными дозами гемина или солей железа. В опытах на морских свинках этот эффект проявлялся слабее. Заменить соли железа солями других металлов не удалось. Железо не возвращало вирулентность пигментированным авирулентным штаммам, например, P+ FI+ VW-, и их непигментированным мутанатам P- FI+ VW- [Jackson S., Burrows T. W., 1956].

Эти данные в последующем были подтверждены многими другими авторами, в частности Л. А. Аваняном [1974] и, таким образом, потребность в от железе стали рассматривать как еще одну детерминанту вирулентности чумного микроба.

Утрата вирулентности при превращении штаммов с фенотипом Р+ в P- скорее всего связана с потерей ими сидерохромов, необходимых для обеспечения клетки железом. Однако вопрос о происхождении их у штаммов P+ остается неясным. Одни считают, что Y. pestis обладает способностью к их синтезу [Wake A. et al., 1975], а другие полагают, что чумной микроб "заимствует" чужие хромофоры [Butler T., 1983]. Так или иначе, но обе гипотезы объясняют способность Y. pestis к размножению в животных тканях, содержащих свободное железо в критических концентрациях. Однако нуждается в дальнейшем изучении и вопрос о механизме влияния in vivo гемина или железа на штаммы Р-.

Говоря о значении ионов железа для вирулентности чумного микроба, нужно обратить внимание еще на одно обстоятельство, а именно на способность всех иерсиний при дефиците железа в окружающей среде образовывать новые полипептиды. Два из них, обладающие большой мол. массой (HMWPs), синтезируются de novo только высоковирулентными штаммами и располагаются во фракции внешних мембран. Интересной особенностью HMWPs является то, что все они имеют общие эпитопы [Carniel E. et al., 1989]. К этому добавим, что необходимые условия для синтеза HMWPs имеются в организме всех животных и человека. Судя по всему, образование HMWPs коррелирует с признаком пигментообразования у чумного микроба, а очищенные HMWPs подавляют продукцию макрофагами кислородных радикалов,

По данным H. Tsukano и сотр [1986], ген, ответственный за признак Р+, трудно "привязать" к одной из плазмид. Этот ген удалось передать штамму Р- с помощью "вспомогательной", конъюгативной плазмиды RP4, что свидетельствует о его хромосомном происхождении. Полученный рекомбинантный штамм восстановил вирулентность для мышей.

Недавно получены новые доказательства хромосомной локализации pgm локуса, протяженностью в 102 т. п.н., а также новые данные о связи Pgm c чувствительностью к пестицину (см. раздел 3.8.7) [Lucier T. S. et al., 1996].

3.8.6. Независимость от пуринов

К числу важных особенностей вирулентных штаммов чумного микроба относится их способность к синтезу пуринов (Pu+); мутация в направлении утраты этой способности (Pu-) сопровождается потерей вирулентности для животных без изменения других свойств микроба. Авирулентность отдельных штаммов Pu+ объясняется, вероятно, отсутствием у них других детерминантов вирулентности. Например, у штамма TS нет антигенов V и W (Pu+ FI+ P+ VW-), а штамм EV лишен способности к образованию пигмента на среде с гемином (Pu+ F!+ P- VW+) [Burrows T. W., 1955, 1960 a, b].

Введение соответствующего пурина животным вместе со штаммами Pu- восстанавливает их вирулентность (при этом у мышей отмечается генерализованная инфекция: в отсутствии же экзогенного пурина из органов забитых животных высевается микробов меньше, чем вводится. Предполагается, что штаммы Pu- лишены ферментов, необходимых для синтеза пуринового кольца из его предшественников. У штаммов Pu- блок в синтезе пуринов, расположенный на пути к синтезу инозин-монофосфата, можно обойти путем добавления гипоксантина, причем вирулентность таких штаммов снижается незначительно. Наоборот, при нарушении образования аденина и гуанина снижаение вирулентности более выражено. In vivo такие мутанты утилизируют аденин или гуанин, рибо- и дезоксинуклеозиды, но не нуклеотиды.

Я не знаю ни одного случая, когда при элиминации известных плазмид терялся бы признак Pu+. Следовательно, его фенотипическое выражение связано с хромосомным контролем.

Здесь уместно напомнить, что независимость чумного микроба от азотистых оснований была установлена еще в начале 50-х годов [Домарадский И. В., 1956]. Правда, связь признака Pu+ с вирулентностью осталась тогда за кадром.

Некоторые особенности метаболизма азотистых оснований у чумного микроба служили уже предметом специального обсуждения [Майский В. Г., 1986].

3.8.7. Пестицин

R. Ben-Gurion и I. Hertman [1958] описали наличие у чумного микроба первого бактериоцина (пестицина. Позднее R. Brubaker и M. J. Surgalla [1961] выявили еще один пестицин. Теперь их обозначают, как P1 и P2 соответственно. P1 образует большинство штаммов чумного микроба, но не возбудителя псевдотуберкулёза, а продукция P2 характерна для всех штаммов как Y. pestis, так и Y. pseudotuberculosis.

По индукции ультафиолетовым светом, отношению к трипсину, зависимости от температуры и некоторым другим свойствам оба пестицина сходны. Однако между ними есть и принципиальное отличие: образование P2 кодируется хромосомой (наши данные), а гены P1 ("pst") локализованы на плазмиде Pst.

Активность обоих пестицинов нейтрализуется сыворотками против микробов чумы и вирулентного штамма возбудителя псевдотуберкулёза. Тем не менее R. Brubaker и M. J. Surgalla (1961) считали, что роль антител сводится лишь к блокаде рецепторов соответствующих бактериоцинов, а на сами пестицины антитела не влияют. Основанием для подобного заключения послужило, в частности, аналогичное действие на пестицины сывороток против непестициногенных штаммов Y. pestis.

К P1 чувствительны штаммы серотипа I Y. pseudotuberculosis, штаммы чумного микроба, не образующие P1, и отдельные штаммы P1 этого микроба; последние обычно плохо растут, возможно из-за чувствительности к продуцируемому ими бактериоцину. В отличие от P1 второй пестицин действет лишь на немногие P1- негативные штаммы Y. pestis (табл. 17).

Связь между P1 и вирулентностью служила предметом многочисленных исследований. При этом было установлено, что все мутанты чумного микроба, потерявшие способность продуцировать P1, становятся авирулентными, хотя некоторые авирулентные штаммы образуют P1. В этом отношении заслуживает упоминания работа И. Л. Мартиневского (1969). Согласно его данным, пестицин образуют штаммы чумного микроба, выделенные в Среднеазиатском и Волго-Уральском очагах, Дагестане, Забайкалье, Горном Алтае, а также в "океанических" очагах. Штаммы изолированные в Теджен-Мургабе (Туркмения) и Закавказском нагорье его не образуют. Близкие результаты были получены также Н. Н. Новосельцевым [1967]. Он показал, что штаммы от полевок и их блох из очагов Нагорного Азербайджана и Армении могут служить только индикаторами пестицина. Напомним, что именно полевочьи штаммы отличаются "избирательной" вирулентностью, на что мы указывем, говоря ниже об отсутствии у них фибринолизин-коагулазной системы.

Вирулентность пестициннегативных мутантов чумного микроба повышается у мышей, которым вводятся ионы трехвалентного железа для насыщения трансферина крови. Предполагается, что ионы железа скорее всего тормозят образование перекисных соединений в профессиональных фагоцитах, что способствует выживанию в них бактерий [Brubaker R. et al., 1965].

Нечувствительность подавляющего большинства P1+ штаммов чумного микроба к собственному пестицину привело к заключению о наличии у них фактора, сообщающего иммуность к нему, что характерно для типичных бактериоцинов [Brandis H., (marda J. 1971; Reeves P.,1972]. Этот фактор действует на пестицин подобно ингибитору, от которого первый удалось частично освободить [Brubaker R., Surgalla M. J.,1962]. Поскольку наличие ингибитора может препятствовать выделению и идентификации чумного микроба, E. D. Beesley и M. J. Surgalla [1970] предложили специальную среду, содержащую ЭДТА и избыток ионов кальция, которые подавляют активность ингибитора.

Пестицин 1 (мономерный цитоплазматический белок с мол. массой около 63 кДа. В отличие от ряда бактериоцинов, P1 не подавляет синтеза ДНК, РНК и белка, а как показано R. Hall и R. Brubаker [1978], его действие на чувствительные бактерии сводится к превращению их в нежизнеспособные осмотически стабильные сферопласты, что связано с гидролизом муреинлипопротеинов. Таким образом, Р1 является ферментом (N-ацетил-(-глюкозаминидазой [Feber D. M., Brubaker R., 1979].13

3.8.8. Фибринолизин и плазмокоагулаза

Оба свойства чумного микроба, отличающие его от двух других иерсиний, к числу "классических" факторов вирулентности не относятся. Тем не менее, по нашему мнению, они имеют непосредственное отношение к патогенезу чумы. Есть и другие основания рассматривать их именно в этой главе (см. ниже).

Анализируя особенности патологической анатомии при чуме, В. Н. Лобанов [1956] писал: "Почти все исследователи отмечают, что при окраске органов на фибрин они или получали отрицательные результаты, или обнаруживали фибрин в незначительных количествах". Говоря о первичной легочной чуме он вновь подчеркивал, что "авторами ряда работ было отмечено полное или почти полное отсутствие фибрина в легких…". Собственные исследования В. Н. Лобанова привели его к подобному же заключению.

Особый интерес представляют указания на отсутствие фибрина при чуме даже в тромбах, расположенных в капиллярах и сосудах большого калибра [Кишенский Д. П. и др., 1911; Лобанов В. Н., 1956; Albrecht H., Gohn A., 1898].

Вполне естественно поэтому, что давно уже возникло подозрение о наличии у Y. pestis фибринолизина. В конце концов это подтвердил Madison [1936; цит. по Pollitzer R., 1954]. По его данным, наиболее чувствительным к фибринолитическому фактору чумного микроба оказался фибрин крысы. Приблизительно в 6 раз менее чувствителен был фибрин человека и морской свинки. Еще большей резистентностью обладал фибрин земляной белки, а также кошки, кролика, коровы и, наконец, обезьяны. Фибрины лошади, барана и свиньи не лизировались вовсе.

Позднее заключение Madison о способности чумного микроба лизировать фибрин было подтверждено другими авторами.

Изучив 114 штаммов чумного микроба различного происхождения и различных сроков хранения, из которых 4 штамма оказались фибринолитически неактивными, Г. А. Яромюк [1964] пришла к выводу, что фибринолитическая активность является одним из наиболее постоянных свойств чумного микроба, присущих как высоко-, так и слабовирулентным штаммам. В отличие от чумного микроба возбудитель псевдотуберкулёза способностью к фибринолизу не обладал, Последнее заключение было сделано на основании изучения 62 штаммов, из которых 28 были музейными, а остальные свежевыделенными.

Более детальные исследования [Домарадский И. В., Г. А. Яромюк, 1960] привели к выводу о тесной связи чумного фибринолизина с микробной клеткой, чем он существенно отличается от стрептокиназы и стафилокиназы.

Как показали наши последующие опыты, фибринолизин чумного микроба сохраняется при лиофилизации клеток и является весьма термостабильным фактором. В этом отношении он оказался сходным со стрептокиназой.

Исследования чувствительности свободного от сыворотки крови фибрина и фибрина плазмы к фибринолитическому фактору чумного микроба выявило существенные отличия в степени лизиса этих субстратов.

Фибрины крови человека и животных, полученные коагуляцией очищенных фибриногенов гомологичными тромбинами, лизировались чумным микробом независимо от их видовой принадлежности. Фибринолитический фактор чумного микроба вызывал лизис не только фибрина, но и фибриногена, который превращался в несвертывающийся под действием тромбина белок.

В противоположность очищенному неочищенный фибрин человека из животных обнаруживал резкие видовые колебания чувствительности к фибринолитическому фактору чумного микроба. Например, неочищенный фибрин человека, морской свинки и кролика лизировался сравнительно легко, тогда как лизис неочищенного фибрина свиньи или барана происходил только в присутствии очень большого числа клеток чумного микроба.

Неодинаковую чувствительность неочищенного и очищенного фибрина чкловека и животных к фибринолитическому фактору чумного микроба мы связали с наличием в сыворотке крови фибринозащитных субстанций или ингибиторов плазмина? фибринолитического фермента крови, концентрация которых в крови человека и животных колеблется в широких пределах. Как показали наши опыты, ингибиторы плзмина в крови животных, невосприимчивых к чуме, маскируют истинную чувствительность их фибрина к фибринолитическому действию чумного микроба.14

Фибринолизин чумного микроба нам удалось солюбилизировать растворами тиоционата калия по Эмису или с помощью мочевины и доказать при этом отсутствие его связи с одним из токсинов. Это же дало возможность приступить к выяснению механизма действия фибринолизина. В итоге многочисленных опытов было показано, что на самом деле фибринолизин чумного микроба не является фибринолизином как таковым, а относится к числу активаторов плазминогена. Однако как активатор плазминогена он отличается от стрептокиназы и стафилокиназы: стрептокиназа для активации плазминогена быка нуждается в присутствии проактиватора, содержащегося в человеческой крови, а стафилокиназа вообще не активирует бычий плазминоген. Напротив, чумной "фибринолизин" обнаруживал большое сходство с активаторами плазминогена, которые встречаются в тканях животных [Яромюк Г. А., Домарадский И. В., 1960].

В настоящее время результаты наших работ по чумному "фибринолизину" признаны во всем мире и рекомендуются даже в качестве диагностического теста [Bahmanyar M., D. C. Cavanaugh, 1976].15

После выявления у чумного микроба внехромосомных генетических элементов было установлено, что вирулентность чумного микроба неразрывно связана с наличием у него самой мелкой пазмиды, положение на которой гена "фибринолизина", точно локализовано нашим учеником А. Л. Мельниковым [дис. …канд. биол. наук., закрытая, 1987] и многими другими исследователями в Россси и за рубежом. Тогда же было установлено, что один и тот же ген pla кодирует образование активатора плазминогена и плазмокоагулазы [Sodeinde O. A., Goguen J. D., 1988].

Имеет ли "фибринолизин" отношение к тем патологоанатомическим находкам при чуме, о которых говорилось выше, до сих пор не ясно Однако его значение для патогенности чумного микроба становится все более явным. На одну из возможных функций фибринолизина указала еще Г. А. Яромюк [1964]. Ссылаясь на литературные данные об участии плазмина в повышении проницаемости тканей. она писала, что "фибринолизин" не только участвует в "локальном фибринолизе в очагах воспаления, но играет также роль "фактора распространения". Эта гипотеза хорошо восполняла тот пробел в наших знаниях о чумном микробе как о высокоинвазивном микроорганизме, который возник после доказательства отсутствия у него гиалуронидазы [Домарадский И. В., 1966]. И эта точка зрения разделяется зарубежными авторами. Так, например, меньшую, чем у чумного микроба инвазивность возбудителя псевдотуберкулёза, R. Brubaker [1967] объяснял отсутствием у него "фибринолизин-коагулазных" энзимов.

Прямые указания на значение pla гена для вирулентности чумного микроба получены O. A. Sodeinde и соавт. [1992]. Для мышей клетки чумного микроба, утратившие плазмиду с мол. массой 9,6 т. п.о., но несущие клонированный ген pla, оказались столь же вирулентными, как и клетки с этой плазмидой.

Далее выяснился весьма любопытный факт, биологическую целесообразность которого объяснить не так легко. Дело в том, что, как уже указывалось, присущая всем иерсиниям плазмида (pCad, обладает набором детерминантов для синтеза LCR-белков. Однако у возбудителя чумы набор этих белков всегда бывает намного меньше, чем у Y. pseudotuberculosis и Y. enterocolitica. Как оказалось, причина этого кроется в наличии другой плазмиды (Pst, а точнее, в кодируемом ею активаторе плазминогена, которому и приписывают участие в посттрансляционной деградации белков внешней мембраны [Sodeinde O. A. et al., 1988]. Мутации в гене pla предотвращают этот процесс, а штамм с клонированным геном pla, столь же "агрессивнен", как и штамм с плазмидой Pst. По данным R. Brubaker и соавт. [1987], то же происходит с V-антигеном чумного микроба, который в процессе очистки распадается на антигены с меньшей молекулярной массой. Каким образом активатор плазминогена вызывает деградацию белков, нам пока не понятно. Однако O. A. Sodeinde и соавт. [1992] называют продукт гена pla "активатором плазминогена с необычными кинетическими свойствами", который может даже расщеплять в специфических участках компонент С3 комплемента.

Относительно недавно наши работы о чумном активаторе плазминогена получили неожиданное развитие. Как установил К. Kuusela [1996], на поверхности таких клеточных структур, как фимбрии и флагеллы кишечной палочки или М-подобные белки ряда грамнегативных и грампозитивных бактерий имеются специфические рецепторы плазминогена. Связывание с этими рецепторами не препятствует активации плазминогена соответствующими активаторами и превращению его в плазмин. Одновременно эти рецепторы связывают ингибитор-2 плазмина и макрогдобулин-2. Данные о том, что расположенный на поверхностях клеточных структур плазмин позволяет бактериям in vitro разрушать внеклеточные матричные структуры и проникать сквозь искусственные мембраны, позволяют рассматривать прокариотические рецепторы плазмингена как новый патогенетический фактор или фактор вирулентности бактерий.

Поскольку фибринолиз, обусловленный чумным микробом, тесно связан с его способностью вызывать также коагуляцию плазмы крови, целесообразно здесь же рассмотреть и этот вопрос.

Впервые способность чумного микроба вызывать свертывание плазмы крови была установлена E. Jawetz и K. Meyer [1944]. По их данным, эта способность Y. pestis выявляется только при использовании плазмы крови кролика и морской свинки.

Так как E. Jawetz и K. Meyer испытывали лишь цитратную плазму, D. M. Eisler [1961; цит. по Домарадскому И. В., 1966] изучил процесс свертывания более подробно. В итоге он установил следующее: 1) авирулентный штамм чумного микроба А1122 свертывал неразведенную плазму крови человека, стабилизированную цитратом или оксалатом, и не вызывал этого эффекта в гепаринизированной плазме; 2) разведенная цитратная плазма (1:10) также подвергается свертыванию, хотя и менее полному и в более поздние сроки, чем неразведенная плазма, в то время как разведенная оксалатная плазма не коагулировала вовсе;3) наибольшей коагулазной активностью отличались культуры чумного микроба, выращенные на сердечно-мозговом бульоне; 4) оптимальной являлась концентрация цитрата, равная 2 мг на 1 мл плазмы; 5) коагулазная активность свойственна только микробным клеткам; в фильтратах бульонных культур она не обнаруживается.16

Помимо штамма А1122, коагулазная активность была констатирована D. M. Eisler у 23 штаммов чумного микроба, но какой-либо связи её с вирулентностью отметить не удалось.

Поскольку фибринолитическая и плазмокоагулирующая активность чумного микроба направлена на один и тот же субстрат, представлялось интересным исследовать взаимосвязь между этими видами активности у различных штаммов чумного микроба. Для этой цели нами была использована в основном цитратная плазма человека, кролика и морской свинки [Домарадский И. B. и др., 1963б]. Всего для опытов было взято 116 фибринолитически активных и 57 неактивных штаммов чумного микроба различного происхождения, сроков хранения и вирулентности. Результаты наших опытов широко известны. Поэтому останавливаться подробно на них мы не будем. Однако на данных следует заострить внимание.

Прежде всего, важно подчеркнуть, что фибринолитическая активность чумного микроба всегда сопровождается его способностью коагулировать плазму и наоборот. Раньше это было довольно трудно понять, но теперь, спустя годы, объяснение нашлось: ведь тот и другой признак чумного микроба кодируется одним и тем же геном pla плазмиды Pst. Благодаря этому стали понятны еще два факта, а именно причина одновременной утраты обоих признаков и характер связи их с вирулентностью чумного микроба. Более того, сейчас мы уже можем объяснить отсутствие фибринолизин-коагулазной системы у полевочьих штаммов чумного микроба из закавказского высокогорного очага чумы, отличающихся "избирательной вирулентностью".

Данные о том, что ген pla кодирует синтез фибринолизин-коагулазной системы чумного микроба недавно послужил поводом для очень интересной гипотезы. По мнению K. A. McDonough и S. Falkow [1989], продукт гена pla является одним и тем же белком, а появление у него той или иной активности осуществляется на посттрансляционном уровне и зависит от температуры среды: появлению коагулазной активности способствует температура ниже 25 (С, а фибринолитической (выше 30 (С. Авторы не исключают, что альтернативные формы продукта гена pla необходимы микробу для блокообразования у блох, связанного со свертыванием крови, и заражения животных, при котором сгусток должен лизироваться. К сожалению, ни Г. А. Яромюк, ни другим исследователям расшифровать механизм свертывания плазмы чумным микробом не удалось. Сама же Г. А. Яромюк усматривала некоторое сходство между этим процессом и тем, который наблюдается при наличии коагулазопозитивных стафилококков. Если бы это подтвердилось, то можно было бы говорить о чумной коагулазе, как о своего рода активаторе протромбина или аналоге тканевых тромбопластинов.

Наконец, следует подчеркнуть, что фибринолизин-коагулазная система чумного микроба неразрывно связана с его способностью образовывать пестицин 1, что впервые было установлено Е. Г. Кольцовой. Ей же, как указывалось выше, принадлежит заслуга передачи всех трех признаков от чумного микроба кишечной палочке.

<<< Назад
Вперед >>>

Генерация: 5.176. Запросов К БД/Cache: 3 / 1
Вверх Вниз